

Trade Shocks and Political Entry

Thiago G. N. da Costa*

December 26, 2025

Abstract

Economic shocks reshape labor markets, yet their political consequences remain underexplored. This paper examines how economic disruptions influence political entry, candidate composition, and electoral outcomes in legislative elections. We extend [Caselli and Morelli \(2004\)](#)'s model to accommodate heterogeneous shock effects across the ability distribution, enabling analysis of differential impacts on political entry and candidate quality. Under a broad class of equilibria, negative wage shocks increase both candidate numbers and the high-ability share by eroding low-ability candidates' comparative advantage, reshaping entry incentives to favor higher-ability individuals. Empirically, we exploit Brazil's exposure to the China Shock to test these predictions. Using a shift-share design, we find municipalities exposed to import competition experienced sustained increases in political entry, electoral competition, and more educated candidates—driven by deteriorating labor market opportunities consistent with supply-side responses. In contrast, the export boom had minimal effects, highlighting asymmetric trade shock impacts. We further document shifts in candidate demographics and ideology, with import shocks reducing left-wing electoral success. Our findings show economic dislocation shapes political representation by altering the candidate pool, independent of voter demand responses.

Keywords: Economic shocks, political entry, trade shocks, candidate quality, local elections, Brazil.

I. Introduction

Economic shocks have long attracted the attention of economists, with extensive research examining their causes, effects across sectors, and the policy responses they elicit. A

*Getulio Vargas Foundation (FGV) - Sao Paulo School of Economics

well-established literature documents how shocks—whether trade-related, technological, or financial—reshape labor market outcomes, influencing employment, wages, and local economic conditions. Yet, the political implications of such shocks remain less fully understood. Theoretical models in political economy recognize that local economic conditions shape political entry, yet the role of economic dislocation remains underexplored. Despite the clear relation between economic shocks and the supply of politicians, the literature has largely focused on the demand side of politics, through changes in voter preferences, and electoral outcomes. This paper addresses this gap by examining, both theoretically and empirically, how major economic disruptions influence political entry, candidate composition, and electoral outcomes in local elections.

We begin by extending the framework of [Caselli and Morelli \(2004\)](#), a citizen-candidate model in which individuals of heterogeneous ability decide whether to enter politics. Our theoretical contribution builds on this foundation to better capture how economic shocks affect political entry and selection. First, we allow opportunity costs to vary for both high- and low-ability individuals, rather than restricting variation to high-ability types as in the original model. This generalization is essential, as we conceptualize economic shocks as changes in outside options, and our goal is to examine a broad class of shocks with heterogeneous effects across the ability distribution. Second, we characterize not only how shocks affect the composition of the candidate pool, but also how they influence the overall measure of individuals who choose to run for office.

This richer structure yields comparative statics on both candidate quality and political competition. Crucially, the model captures changes in political entry entirely through supply-side responses—without relying on shifts in voter preferences. We show that, in most equilibrium configurations, a negative shock to private-sector wages (i.e., outside options) increases both the number of candidates and the share of high-ability entrants; and in all equilibria, at least one of these margins is affected.

Following our theoretical predictions, we empirically examine the impact of one specific trade shock, the China Shock. China’s rapid industrialization and integration into global markets in the early 2000s created sharp changes in trade patterns, generating both winners and losers across regions and sectors. In Brazil, this translated into a dual shock: a surge in commodity exports to China that benefited rural and resource-rich areas, and a wave of Chinese manufactured imports that drastically increased competition in urban, manufacturing-heavy regions ([Costa et al., 2016](#)). We exploit this heterogeneity to provide novel evidence on how trade shocks shape political entry, the demographic and ideological composition of candidates, and electoral outcomes in municipal legislative races between 2000 and 2020.

Our empirical strategy builds on established methodologies in the China Shock literature (Autor et al., 2021; Costa et al., 2016). Using a shift-share identification strategy that leverages pre-existing sectoral employment patterns, we estimate the causal effects of municipality-level exposure to import and export shocks.

Our analysis yields three central findings. First, municipalities more exposed to Chinese import competition experienced a sustained relative increase in the number of city council candidates and a rise in electoral competition—proxied by the effective number of candidates. These effects remain when we focus on new entrants, those who had not run in the previous election cycle, and are preceded by increases in political party affiliation, suggesting that these effects come from a direct labor market response to the worsening of private market conditions.

Second, we document a compositional shift toward more educated candidates. Exposure to the import shock is associated with a relative increase in the share of candidates—and elected officials—with secondary and tertiary education, alongside a decline in those without primary schooling. These patterns suggest that deteriorating private-sector opportunities induce higher-ability individuals to enter politics, even though the wage effects of the China Shock are relatively uniform across education levels (Connolly, 2022; Autor et al., 2013).

Finally, we find that the import shock reshaped the demographic and ideological makeup of local elections. Exposure led to a greater relative share of younger candidates and a decline in female candidacies, though these shifts did not consistently translate into electoral success. Ideologically, the import shock reduced the relative electoral success of left-wing candidates, echoing patterns found in Ogeda et al. (2024). We confirm the robustness of our findings through placebo tests, additional controls, and alternative shock constructions. Results remain consistent across specifications.

In contrast, the export boom—despite its clear economic significance—had limited political effects. The only consistent outcome was a modest increase in the relative share of highly educated candidates. The absence of broader political impacts stands in stark contrast to the effects of the import shock, and likely reflects the distinct institutional and socioeconomic characteristics of regions differentially exposed to each type of trade shock. These divergent patterns underscore the need for further research into the mechanisms through which positive economic shocks shape political behavior, and suggest that the channels at work may differ fundamentally from those triggered by economic dislocation.

This paper contributes to a growing literature on the determinants of political entry, including financial incentives, labor market conditions, and individual motivations (Besley, 2005; Gagliarducci and Nannicini, 2013; Gulzar and Khan, 2024). We add to

this body of work by examining how sharp changes in labor market conditions shape the pool of individuals who choose to run for office, and in doing so, influence political representation.

While prior research has linked trade shocks to changes in electoral outcomes, most studies focus on how voters respond to economic disruption. In the Brazilian context, several papers document how trade shocks have persistent effects on political preferences and voting patterns. [Ogeda et al. \(2024\)](#) show that regions more exposed to tariff reductions during the 1990s trade liberalization experienced long-term declines in support for left-wing presidential candidates, suggesting that economic dislocation can induce durable ideological shifts. Similarly, [Moreno-Louzada et al. \(2024\)](#) find that areas benefiting from China-driven export demand have moved toward right-leaning positions, likely reflecting improved labor market conditions and reduced reliance on redistribution. These findings underscore how globalization can reshape voter preferences through both economic hardship and prosperity. Our study complements this work by focusing on the supply side of politics—how shocks influence who enters the political arena—thereby offering a different perspective on how trade affects democratic representation.

Other research highlights how economic conditions influence voters' evaluations of incumbents. [Novaes and Schiumerini \(2022\)](#) and [Freitas et al. \(2020\)](#) demonstrate that fluctuations in commodity prices can affect mayoral re-election rates, pointing to the salience of local economic performance in shaping electoral accountability. [Campello and Urdinez \(2021\)](#), meanwhile, show that public attitudes toward China differ depending on whether regions experienced import competition or export gains—an asymmetry we also observe in candidate entry, with import shocks driving significant political effects while export shocks do not. These findings motivate our attention to how different types of shocks, particularly negative ones, shape the composition of political entrants.

We also contribute to the literature on how financial and non-financial incentives affect the quality and quantity of political candidates. Existing evidence shows that increases in politician salaries or reductions in opportunity costs tend to attract more and better-qualified candidates ([Gagliarducci and Nannicini, 2013](#); [Ferraz and Finan, 2011](#); [Dal Bó et al., 2013](#)), though outcomes vary with institutional context and individual motivation ([Fisman et al., 2015](#)). Our analysis extends this line of inquiry by showing that adverse labor market shocks can lead high-ability individuals to pursue public office—even in the absence of formal increases in remuneration. In line with recent work on intrinsic motivations, we also consider how non-material factors may drive political entry. For example, [Gulzar and Khan \(2024\)](#) finds that priming pro-social norms increases both entry and alignment with voter preferences.

Finally, our findings speak to a well-established literature demonstrating that who gets elected matters for policy. Numerous studies show that the demographic and ideological profiles of politicians influence public spending priorities, redistributive programs, and governance outcomes. For instance, female legislators are more likely to support gender-related initiatives (Chattopadhyay and Duflo, 2004; Correa and Madeira, 2014), and minority representation affects the allocation of targeted transfers (Pande, 2003; Gulzar et al., 2020). Candidate education and ideology also shape legislative behavior, policy responsiveness, and oversight (Levitt, 1996; Besley et al., 2011; McClean, 2023). Greater political diversity has been linked to more inclusive decision-making and higher legislative productivity (Beach and Jones, 2017; Alesina et al., 1999), while increased electoral competition can enhance candidate quality and reduce undesirable traits (Shaukat, 2019).

By documenting how labor market shocks influence the demographic, educational, and ideological profile of political entrants, our analysis sheds light on a previously underexplored mechanism linking economic change to political representation. In this way, we bridge the gap between macroeconomic disruptions and downstream policy outcomes, offering new insight into how globalization shapes the functioning of democracy.

The remainder of the paper is organized as follows. Section 2 provides institutional background. Section 3 outlines the theoretical model. Sections 4 and 5 describe the data and empirical strategy. Section 6 presents the results, and Section 7 concludes. Appendices contain additional figures, tables, model details, and robustness checks.

II. Institutional Context

A. *China Shock*

We focus on the China Shock not only due to its global significance, but also because it offers a well-documented, externally driven source of variation with established empirical methodologies. As one of the most consequential trade shocks in recent history, it provides a unique opportunity to study how large-scale economic changes influence political selection. Its sectoral heterogeneity—disproportionately affecting manufacturing and commodity-producing regions—allows for a nuanced analysis of differential local impacts. Moreover, the timing of the shock aligns closely with our municipal election data, enabling a credible empirical design.

The China Shock refers to the sweeping economic transformations triggered by China's rapid industrial expansion and integration into global markets. Following a series of market-oriented reforms beginning in the late 1970s and culminating in its accession

to the World Trade Organization in 2001, China emerged as a major global exporter of manufactured goods. This expansion led to a sharp increase in Chinese exports, generating intense import competition for manufacturing industries worldwide, while simultaneously driving up global demand for raw materials.

In Brazil, the shock manifested through two distinct channels. First, the surge in Chinese imports exposed domestic manufacturing firms—particularly in labor-intensive sectors—to substantial competitive pressure. Regions historically reliant on manufacturing experienced declines in formal employment and wage stagnation. Second, China’s demand for commodities such as iron ore, soybeans, and oil fueled a boom in Brazil’s extractive and agricultural sectors. Resource-rich regions benefited from rising prices and employment growth, particularly in formal jobs.

This divergence across regions generated meaningful variation in local labor market conditions. As shown by [Costa et al. \(2016\)](#), while import-competing areas faced economic dislocation, commodity-exporting municipalities experienced sustained gains. These asymmetric effects created a natural laboratory to study how shifts in economic opportunities influence political candidacy. In particular, changes in the relative attractiveness of labor market alternatives may alter the pool of individuals willing to enter politics, reshaping the composition of candidates and, ultimately, elected officials.

B. Local Politics: City Councils and Elections in Brazil

We focus on city council elections because they represent the entry point into political careers and offer a cleaner setting to study the trade-off between running for office and remaining in the labor market. Unlike higher levels of government, where most candidates are career politicians and likely less sensitive to labor market conditions, city council races attract a more diverse pool of candidates, many of whom are running for the first time. This makes them particularly well-suited for analyzing how economic shocks influence political entry.

Our empirical strategy relies on variation in local exposure to trade shocks, which further justifies the focus on local elections. Among local offices, city councils are preferable to mayoral races: while mayoral elections typically involve only a few candidates (on average, three per municipality; [Avis et al. \(2022\)](#)) and are more competitive, city council races involve dozens or even hundreds of candidates, generating greater variation in candidate characteristics and allowing for more precise estimation of effects.

City council races also present lower barriers to entry. Campaigns are relatively inexpensive, many candidates self-finance, and there is less reliance on political parties or

gatekeepers for nomination ([Norris, 1997](#)). As such, these elections offer a unique window into how shocks to opportunity costs affect the decision to enter politics.

City Councils in Brazil Brazil is a decentralized federation with significant autonomy granted to municipalities under the 1988 Constitution. Municipal governments are responsible for a wide range of services, including basic education, primary healthcare, urban planning, public transportation, and sanitation. They finance these services through a mix of local taxes, shared revenues, and intergovernmental transfers. Smaller municipalities often rely heavily on transfers from the federal government, which can influence local political dynamics.

Municipal legislatures—city councils—are composed of 9 to 55 members, depending on the municipality’s population. Councilors are elected every four years through an open-list proportional representation system. Voters can cast their vote either for an individual candidate or for a party list. City councils are responsible for drafting and approving local legislation, overseeing the municipal budget, and monitoring the executive branch at the local level.

City Council Elections City council elections in Brazil are held concurrently with mayoral elections every four years. The open-list proportional representation system encourages a large number of candidates and relatively low entry costs, making these races more accessible to individuals without prior political experience. Seats are allocated based on the total votes received by parties and candidates, which allows for considerable variation in political competition and candidate profiles across municipalities. This institutional setting provides a rich environment to study how economic shocks affect both the supply of candidates and electoral outcomes.

III. Theoretical Framework

This theoretical framework seeks to deepen our understanding of how economic shocks influence individuals’ self-selection into politics and, consequently, affect electoral competition and candidate quality. Our framework builds on [Caselli and Morelli \(2004\)](#), which adapts the citizen-candidate model introduced by [Osborne and Slivinski \(1996\)](#) and [Besley and Coate \(1997\)](#). Economic shocks—such as a sudden surge in import competition in manufacturing or a sharp increase in commodity demand—directly impact wages and employment at the local level. These shocks alter opportunity costs across labor markets, including the relative attractiveness of political entry. However, they may also induce

shifts in voter preferences.

A distinctive feature of [Caselli and Morelli \(2004\)](#) is that it abstracts from coordination failures and preference heterogeneity, assuming instead that all voters homogeneously prefer higher-quality candidates. The focus, therefore, is on the endogenous self-selection of individuals of differing quality into the candidate pool. This structure provides a clean setting to study how exogenous changes in opportunity costs shape political entry, competition, and candidate quality.

While the original model introduces shifts in opportunity costs only for high-ability individuals—holding those of low-ability candidates constant—we relax this assumption. We explicitly model opportunity costs for all potential candidates, where opportunity costs are given by individuals private sector incomes. High-ability citizens receive income $y^H = \lambda$, while low-ability citizens receive income $y^L = \epsilon$. We preserve the ordering that the opportunity cost for high-ability candidates, λ , remains higher than that for low-ability candidates, ϵ . Additionally, we explicitly derive changes in the measure of candidates caused by overall shifts in opportunity costs, allowing us to make theoretical predictions not only for the effect of economic shocks on candidate quality, but also on volume of candidates.

Let $\omega = (\lambda, \epsilon)^\top$ collect the outside options of high- and low-ability individuals. We model economic shocks as sharp changes on outside options, given by an element-wise rescaling

$$\omega' = \alpha \odot \omega, \quad \alpha = (\alpha_\lambda, \alpha_\epsilon)^\top, \quad \alpha_\lambda, \alpha_\epsilon > 0,$$

where \odot denotes the Hadamard (component-wise) product. A *negative* economic shock is captured by $0 < \alpha_\lambda, \alpha_\epsilon < 1$, and a *positive* shock is captured by $\alpha_\lambda, \alpha_\epsilon > 1$.

Our main theoretical results requires only that both coefficients lie on the *same* side of unity, allowing $\alpha_\lambda \neq \alpha_\epsilon$. This is consistent with the evidence that import-competition shocks depress wages across the skill distribution in broadly the same directions. For Brazil, [Connolly \(2022\)](#) finds that the China shock lowers earnings uniformly across education groups, while for the United States [Autor et al. \(2013\)](#) report comparable wage declines for college-educated and non-college-educated workers. Thus the data support the assumption that α_λ and α_ϵ move together, even if their magnitudes differ.

Below, we lay out the foundations of this model and our main propositions, along with a general overview of the results. Formal derivations of all equilibria can be found in Appendix [A](#).

A. The Model

The model considers a population where individuals decide whether to run for public office. The population is constituted by a continuum of individuals of measure $1 + b$. An exogenous measure b of the population holds public office, while the rest (of measure 1) are private citizens.

3.1.1 Players

Each citizen has finite a cost of running for office, κ . To avoid trivial equilibrium where the whole population runs for office, we assume that for a measure $\nu \in [b, 1]$, $\kappa \rightarrow \infty$.

The population is heterogeneous in ability. A fraction h of the population is of type θ_H , or high-ability, while a fraction $l = (1 - h)$ is of type θ_L , or low ability. The equilibrium fraction of high-ability office holders is given by b_h . Citizens know their types.

Office holders work to provide an indispensable public good. A key assumption is that, once in office, high-ability citizens are more competent than low-ability ones, in the sense that they are able to provide the indispensable public good at lower tax costs. Taxes are lump-sum, denoting by t the per-capita tax burden, we have that $t = t(b_h)$, where $\partial t / \partial b_h < 0$. Hence, voters strictly prefer high-ability candidates.

A private citizen's utility is his consumption. Consumption is market income less taxes, if the citizen has not run for election, and the same, less campaigning costs, if he run for office but lost. Market income depends on the citizen's type: high-ability citizens receive income $y_H = \lambda$, while low-ability citizens receive income $y_L = \epsilon$, where $\lambda > \epsilon$. This is where the opportunity cost of running comes from, for high-ability citizens, we have that the opportunity cost of running is always higher than for low-ability ones. Given lump-sum taxes, each citizen's tax burden is $t(b_h)$: Hence a private citizen of type i utility is $y^i - t(b_h)$ if he did not run for office, and $y^i - t(b_h) - \kappa$ if he did but lost.

Citizen who holds public office receives a payoff of π , which summarizes the utility value of all rewards from public office, both financial and psychological. Hence, an officeholding citizen's utility is $\pi - t(b_h) - \kappa$, with the assumption that $\pi - \kappa \geq \epsilon$.

A key feature of this model is that voters have incomplete information regarding ability types of the candidates. They only observe a signal, s_H or s_L , for each candidate. The precision of the signal is given by $P(s_H | \theta_H) = P(s_L | \theta_L) = \sigma$ where we assume that $\sigma > 0.5$. That is, a fraction σ of the citizens of type θ_i will emit signal s_i if they run for office. All citizens observe the same signal about each of the candidates. Candidates have no control over the signal they emit, but know in advance what it will be if they run for office.

In order to avoid trivial results we assume, realistically, that for either type and for any σ the measure of potential candidates whose signal reveals the true type is greater than the measure of offices. Defining $\mu = (1 + b - \nu)$, which is the total measure of potential candidates, this can be insured by requiring that $h\mu > 2b$ and $(1 - h)\mu > 2b$.¹

3.1.2 Game

Citizens in this economy possess rational expectations and play a citizen-candidate game with three stages:

1. Each citizen observes her own type and the signal she would emit if running for office. Signals are therefore private at this stage. Then they decide whether or not to become candidates. Candidacy and signals are revealed only if the citizen chooses to run. Running for office entails a utility cost κ .
2. After candidacy decisions are made, all signals from candidates are publicly observed. Then, each citizen casts one vote for a candidate. Voters vote as if they were pivotal. If voters are indifferent among candidates, they randomize uniformly among them. The mass of b candidates with the highest vote shares are elected; ties are resolved randomly.
3. Elected politicians and private citizens receive their respective payoffs, depending on type, status (elected or not), and taxes. The equilibrium is solved by backward induction, ensuring its subgame perfect.

B. Political Equilibrium

The objective is to characterize the political equilibrium in terms of N , the total mass of candidates, and b_h , the share of high-ability individuals among those elected². This characterization enables comparative statics that reveal how changes in opportunity costs influence political entry and candidate composition. The analysis begins by detailing the full set of equilibria, followed by the presentation of the main propositions.

Going by backwards induction, we begin by analyzing voter behavior. As previously discussed, voters strictly prefer high-ability politicians, given that $P(s_H | \theta_H) = \sigma > \frac{1}{2}$, non-candidate voters always vote for candidates who emit a high-signal, since these are

¹The measure of individuals in the pool of potential candidates are correctly identified by their signal is given by $\sigma h\mu$ and $\sigma(1 - h)\mu$. Hence, for $\sigma > \frac{1}{2}$, we must have that $h\mu > 2b$ and $(1 - h)\mu > 2b \implies \sigma h\mu > b$ and $\sigma(1 - h)\mu > b$. This ensures that the number of candidates whose signal correctly reveals their true type exceeds the number of available seats, avoiding trivial selection outcomes.

²A formal definition of a political equilibrium can be found in Appendix A.

the ones who are more likely to be of type θ_H .³ One implication is that if the measure of high-signal candidates (h) is greater than the measure of offices (b), low-signal candidates have no chances of being elected. Additionally, given that a fraction $(1 - \sigma)$ of low-ability candidates emit signal s_H , there is measure of low ability citizens who enjoy the same probability of election as the high-ability, high-signal citizens (this is a comparative advantage). Additionally, each candidate clearly votes for himself.

Given voter behavior, individuals take candidacy decisions so as to maximize their own expected utility. Let P_s , $s \in \{s_H, s_L\}$ be the election probability of election of candidates who emit signal $s = s_H, s_L$. To simplify notation, and given that every individual with the same signal enjoys the same probability of election, we will refer to P_H, P_L as, respectively, the election probability of high-signal and low-signal individuals. Non-candidates can only condition their vote on the signal candidates emit. Hence, a candidate's probability of election depends only on his signal.

Consider now the candidacy decision. A candidate of type i and signal s will run for office if and only if

$$P_s[\pi - t(b_h) - \kappa] + (1 - P_s)[y^i - t(b_h) - \kappa] \geq y^i - t(b_h) \quad (1)$$

The left-hand side is the expected return from running for office, which takes into account the possibility of losing and having to return to private life. The right-hand side is the (certain) return from not running. This equation can be rearranged to yield

$$P_s[\pi - y^i] - \kappa \geq 0. \quad (2)$$

Given that $y^H = \lambda > y^L = \epsilon$, whenever high-ability individuals with a given signal (weakly) prefer to run for office, all low-ability individuals with the same signal strictly prefer to do so as well. One immediate implication is that, in equilibrium, high-ability individuals who emit a low signal never run: these are agents with strong outside options but limited political skill, and in the absence of a credible mechanism to differentiate themselves, candidacy is never optimal.

The model admits several distinct equilibrium configurations, determined by the opportunity costs faced by potential candidates and the relative measure of low-ability, high-signal individuals. These equilibria differ in the types of agents who choose to enter the political race.⁴

³See Appendix A for formal derivations.

⁴Equilibria in which no individuals run for office are theoretically possible but fall outside the relevant scenarios and are therefore omitted from the discussion.

Two key insights follow. First, low-signal individuals effectively compete for the left-overs of the political race: if the mass of high-signal candidates exceeds the number of available seats, low-signal types have no chance of election. Second, whenever the number of candidates of a given type exceeds the number of positions they compete for, the homogeneity of candidates within that type implies that, at equilibrium, they must be indifferent between entering and not entering, since they all face the same election probability.

The relevant equilibria can be categorized as follows, based on which types of agents satisfy the running condition:

Full high-signal participation - All individuals emitting a high signal choose to run, while no low-signal individuals enter.

This equilibrium arises when opportunity costs are sufficiently low such that Equation (2) holds strictly for all (θ_i, s_H) types and fails for all s_L types. At this point, even at the minimum election probability for high-signal candidates (P_H^{min}) their expected payoff from running exceeds its outside option.⁵ This configuration maximizes the share of high-ability candidates among those elected. It corresponds to the flat leftmost segments in Figures 1 and 2.

Partial entry among high-ability, high-signal types - All high-signal, low-ability individuals run, while only a subset of high-ability individuals with the same signal enter. No low-signal individuals run.

This configuration arises as opportunity costs increase, such that Equation (2) holds strictly for (θ_L, s_H) types and with equality for (θ_H, s_H) types, implying indifference at the margin. The condition fails for all s_L types.

As λ rises, high-ability individuals require higher election probabilities to enter, reducing both the share of high-ability candidates and the total mass of entrants. This region corresponds to the downward-sloping segments in Figures 1 and 2.

Marginal entry of low-signal, low-ability types - All high-signal, low-ability individuals choose to run; a subset of high-ability, high-signal individuals enter; and some low-ability, low-signal individuals also participate.

⁵ $P_H^{min} = \frac{b}{\mu_H + \mu_L}$, which is the election probability for high-signal candidates when they all run.

Figure 1: Relationship between the measure of candidates and opportunity costs for high-ability individuals

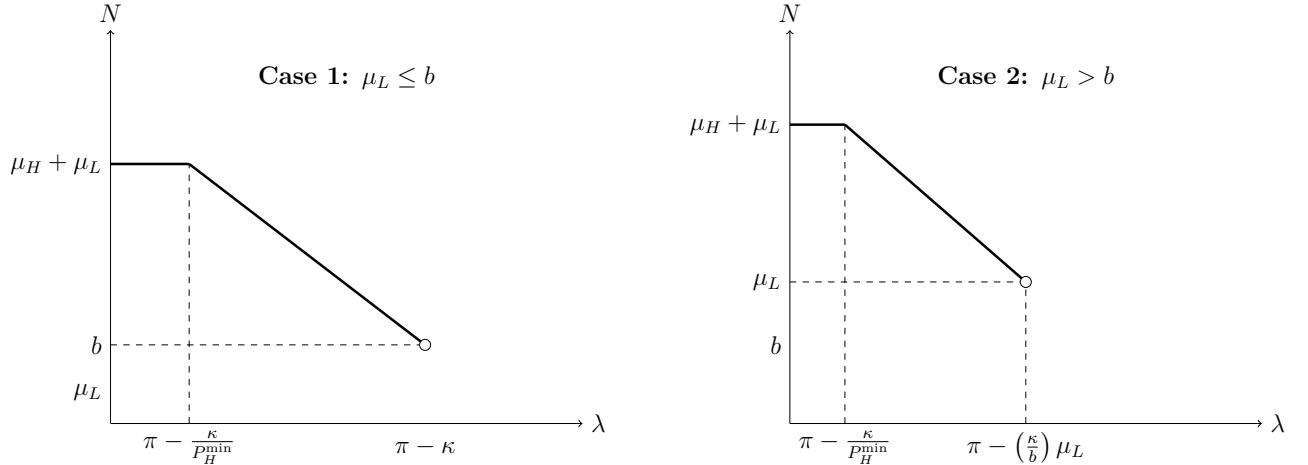
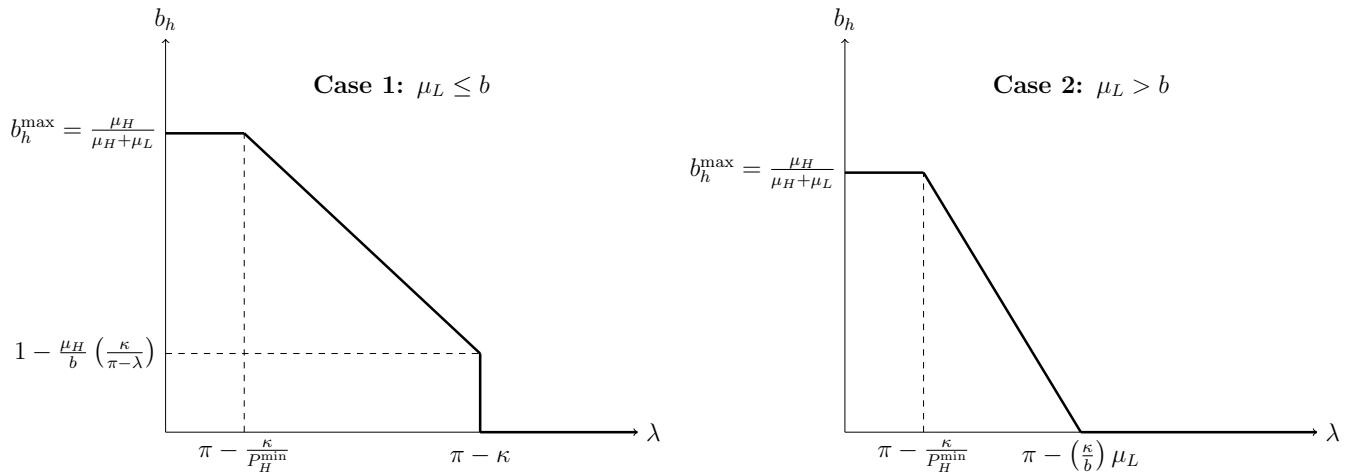
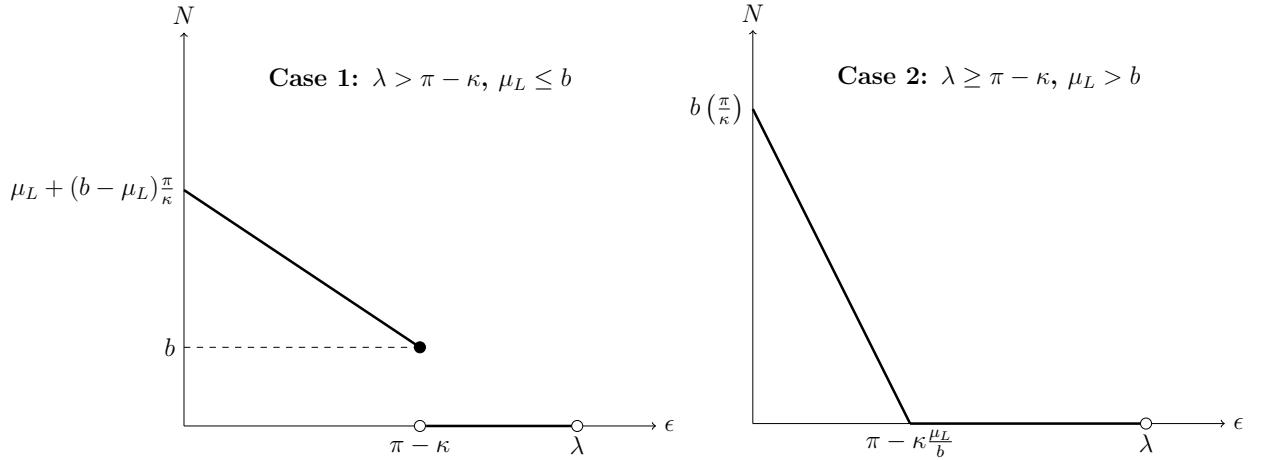



Figure 2: Relationship between ability of the elected body and high-ability opportunity costs under different relative measures of high-signal, low-ability individuals

This equilibrium may arise only under the conditions $\lambda = \pi - \epsilon$ and $\mu_L < b$, though these conditions are necessary but not sufficient. It corresponds to the case in which Equation (2) holds strictly for (θ_L, s_H) types, and holds with equality for (θ_H, s_H) and (θ_L, s_L) types. A continuum of equilibria is possible, depending on the measure of entrants from each group. For a detailed characterization, see Appendix A.1.

Exclusive entry of high-signal, low-ability types -

This equilibrium arises when Equation (2) holds only for (θ_L, s_H) types and their measure exceeds the number of available offices ($\mu_L > b$). In this case, no feasible election probability can induce entry by high-ability candidates, as their outside option dominates the expected return from office. Formally, this occurs when $\lambda > \pi - (\frac{\kappa}{b}) \mu_L$. The entire elected body consists of low-ability individuals, and the share of high-ability elected candidates falls to zero ($b_h = 0$), as shown in the right panel of Figure 2. At this stage, the total number of candidates is determined by the opportunity costs for low-ability individuals, illustrated by the downward-sloping segment in right panel of Figure 3.


Low-ability dominated entry - Both high-signal and low-signal low-ability individuals run, while all high-ability candidates are absent.

This equilibrium occurs when Equation (2) holds strictly for (θ_L, s_H) , with equality for (θ_L, s_L) , and fails for all θ_H types. It arises when $\mu_L < b$ and opportunity costs for high-ability individuals are sufficiently high to deter entry. Since the mass of high-signal, low-ability candidates is insufficient to fill all seats, some low-signal candidates enter and compete for the remaining slots. This configuration corresponds to the downward-sloping segment in the left panel of Figure 3.

Now that all equilibrium configurations have been characterized, we turn to the main theoretical results of the model. These propositions describe how economic shocks, through sharp changes in opportunity costs, affect the total measure of political candidates and the composition of those elected. The effects of economic shocks depend mainly on whether the initial equilibrium belongs to the set of *Selective Entry Equilibria* or to the set of *Adverse Selection Equilibria*.

The *Selective Entry Equilibria* encompass all configurations in which there is a mix of high- and low-ability individuals, but only among high-signal candidates. This set includes equilibria where low-signal candidates have no chance of election, and opportunity costs for high-ability individuals are low enough to generate either partial or full entry by high-ability, high-signal types.

Figure 3: Relationship between the measure of candidates and opportunity costs for low-ability individuals under different conditions

The set of *Adverse Selection Equilibria* includes all configurations in which either low-signal candidates enter—due to low or no high-ability participation—or entry is dominated by high-signal, low-ability individuals. These equilibria arise when high-ability individuals strongly avoid electoral participation, either because of favorable labor market conditions or because they are unable to credibly distinguish themselves from low-ability types.

Proposition 1 (Economic shocks in the *Selective Entry* region). Let N denote the equilibrium mass of candidates and b_h the share of high-ability individuals among those elected. Assume the baseline equilibrium belongs to the *Selective Entry* set. Let the shock be represented by the rescaling vector $\boldsymbol{\alpha} = (\alpha_\lambda, \alpha_\epsilon)^\top$, whose components lie on the same side of unity.

- (i) **Aligned negative shock** ($0 < \alpha_\lambda, \alpha_\epsilon < 1$): both N and b_h weakly increase.
- (ii) **Aligned positive shock** ($\alpha_\lambda, \alpha_\epsilon > 1$): at least one of N or b_h weakly decreases.

The *Selective Entry* region is characterized by the fact that every high-signal, low-ability individual strictly prefers to run for office. Because their labor-market prospects are weakest while their electoral prospects are strong, a negative wage shock leaves their entry decision unchanged; they were already in the race. Their mass entry, however, depresses the election probability of high-signal, high-ability contenders. A negative shock to λ —the outside option of high-ability individuals—worsens their labor-market opportunities and makes campaigning more attractive. Low-ability behaviour is unchanged, so the total number of candidates N rises and the share of high-ability winners b_h increases. This

result requires only that the shocks to λ and ϵ have the same sign; no symmetry in magnitudes is needed. In this equilibrium region, what matters is the deterioration in the high-ability outside option, which erodes the low-ability group's competitive edge.

This mechanisms reflects real-world scenarios such as local legislative races, where individuals with limited private-sector prospects but strong name recognition or political signaling are consistently overrepresented in the candidate pool. These individuals crowd out high-ability types by reducing their election probabilities. When a negative economic shock lowers outside options across the board, it has no effect on the low-ability group—whose incentives were already aligned with candidacy—but it relaxes the participation constraint for high-ability individuals, resulting in a strictly positive change in the quality and size of the candidate pool.

Positive shocks move the system in the opposite direction by improving low-ability candidates' relative position. If the shock is not large enough, the post-shock equilibrium remains in the *Selective Entry* set: high-signal, low-ability entrants stay put, but high-ability individuals now find candidacy less attractive, so both N and b_h fall. A sufficiently large positive shock to λ can push the economy into the *Adverse Selection* region. In that case, b_h declines sharply, while N may increase because low-signal, low-ability individuals are drawn into the race; the precise movement of N depends on the joint magnitudes of the shocks to λ and ϵ . Importantly, a positive shock to ϵ affects the final equilibrium only when the shock to λ is large enough to trigger this regime switch.

Proposition 2 (Economic shocks in the *Adverse Selection* region). Let N denote the equilibrium mass of candidates and b_h the share of high-ability individuals among those elected. Suppose the initial equilibrium belongs to the set of *Adverse Selection Equilibria*. Let the shock be summarized by the rescaling vector $\boldsymbol{\alpha} = (\alpha_\lambda, \alpha_\epsilon)^\top$, whose two components lie on the same side of unity.

- (i) **Aligned negative shock** ($0 < \alpha_\lambda, \alpha_\epsilon < 1$): either N or b_h increases strictly.
- (ii) **Aligned positive shock** ($\alpha_\lambda, \alpha_\epsilon > 1$): either N or b_h decreases strictly.

The set of Adverse Selection Equilibria characterized by a dominance of low-ability candidates. Either high-ability candidates are completely absent, or they are massively underrepresented, either because the expected returns from running are strictly dominated by their private-sector options, or because the measure of low-ability, high-signal individuals already saturates the set of available seats, pushing election probabilities below the threshold required to induce high-ability entry.

In this environment, a negative shock to opportunity costs operates through one of two channels. When the decline in λ is modest and thus insufficient to entice high-ability individuals into the race, the accompanying reduction in ϵ lowers the entry threshold for low-ability types, expanding the candidate pool N solely through extensive-margin participation. By contrast, if the drop in λ is large enough for Equation (2) to bind for some (θ_H, s_H) individuals, those high-ability agents also decide to run, raising the share of high-ability winners b_h . Consequently, any reduction in opportunity costs must yield either a larger pool of candidates, a higher-quality elected body, or both.

Positive shocks reverse the logic. In virtually all equilibria belonging to the *Adverse Selection* set, a rise in λ leaves b_h unchanged⁶. Meanwhile, a higher ϵ improves low-ability wages, deterring some low-ability individuals from running and thereby reducing N .

Our empirical analysis tests the central predictions of the theoretical model by examining how a negative economic shock—captured by exposure to increased Chinese import competition—affects political entry and candidate composition. In the model, reductions in private-sector wages lower the opportunity costs of running for office, especially for high-ability individuals. Empirically, we proxy this mechanism using municipality-level exposure to the China Shock, which has been shown to depress local wages in manufacturing-intensive regions. We assess whether greater exposure leads to (i) an increase in the total number of candidates and (ii) a higher share of more educated individuals—our proxy for candidate quality—among both entrants and those elected. A key feature of our theoretical predictions is that symmetry in the size of the shocks is unnecessary. The propositions require only the empirically plausible assumption that the outside options of high- and low-ability individuals move in the *same* direction. The following sections describes the data and empirical strategy used to test these predictions.

IV. Data

A. Electoral Data

To evaluate the impacts of the China Shock on local elections, we utilize electoral data for City Councils from the Superior Electoral Court (TSE), detailing election outcomes, candidate demographics, campaign expenditures, and party affiliation from 2000 through 2020. City council elections in Brazil take place every four years. In our analysis, the first election occurs in 2000, continuing every four years. All electoral outcomes are analyzed as changes relative to the baseline year (2000) for each municipality m , defined as:

⁶The lone exception is the knife-edge case $\lambda = \pi - \kappa$: even a small increase in λ eliminates the residual participation of high-ability agents, because for any $\alpha < 1$ with $\lambda' = \alpha\lambda$, we have $\lambda' < \pi - \kappa$.

$$\Delta Y_{m,t} = Y_m^t - Y_m^{2000}, \quad \text{where } t \in \{2004, 2008, \dots, 2020\}. \quad (3)$$

The first set of outcomes examines electoral participation and competition, focusing on the total number of candidates in each election and the number of effective candidates, a measure of electoral competition given by the inverse of the Herfindahl-Hirschman index, also utilized in [Avis et al. \(2022\)](#), given by:

$$n_m^{\text{effective}} = \frac{1}{\sum_j (\text{Vote Share}_{m,j})^2}. \quad (4)$$

where the summation is over all municipal council candidates j in municipality m .

Beyond participation, we assess changes in candidate demographics and ideological alignment, considering shifts in gender representation, age distribution, education levels, and party affiliation. Lastly, we analyze election outcomes, including electoral success across different demographic and ideological groups. This framework provides a comprehensive view of how trade-induced economic changes influence local political dynamics.

We classify all political parties in our data into left-wing and non-left-wing. Our classification follows [Ogeda et al. \(2024\)](#); when a party was not present in their classification, we followed [Power and Zucco Jr \(2009\)](#), and for the few remaining we classified following media characterization.⁷

Our electoral data allow us to assess the shock's effects over time. The shock occurred during the first decade of the 2000s, reaching a plateau in 2010. We examine its impact for a decade following this peak. As [Autor et al. \(2021\)](#) demonstrate, the negative effects of import competition on manufacturing employment, employment-population ratios, and per capita income persist through 2019. Accordingly, we expect to observe effects beginning in 2010 and extending through 2020—which is precisely what we find. Moreover, many effects intensify toward the end of the decade. This is consistent with our focus on outcomes that are not merely direct, first-order consequences of the China Shock.

B. Municipal Exposure to the China Shock

To assess the impact of trade shocks from China's rise on Brazilian municipalities, we construct measures of municipal exposure to export demand and import supply shocks, following the shift-share methodology used by Costa, Garred, and Pessoa (2016). This methodology exploits exogenous variation in sectoral trade shocks by weighting them

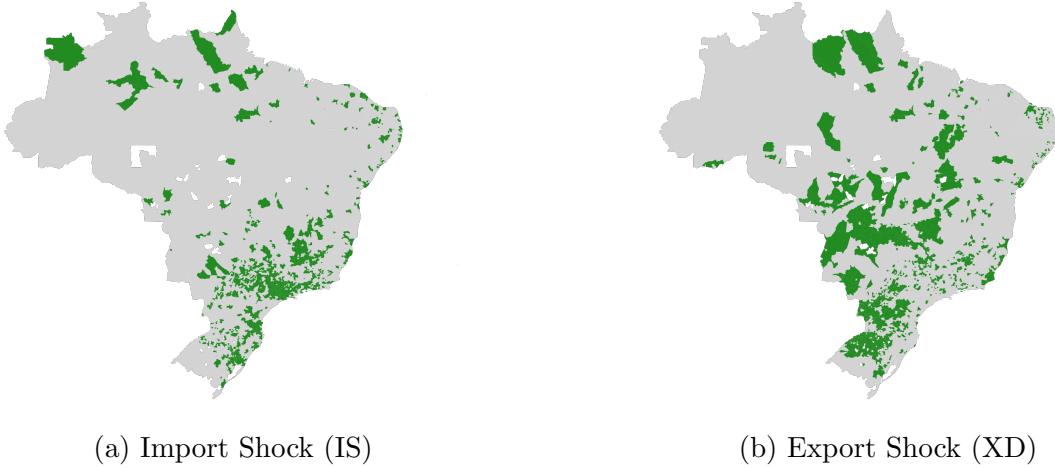
⁷You can find all classifications in Appendix D.

according to the initial employment structure of each municipality.

For employment and socioeconomic data of Brazilian municipalities, we utilize the 2000 Brazilian Demographic Census data aggregated at the municipal level; income measures are in 2010 Brazilian Real. The Gini Index for Brazilian municipalities for the year 2000 is sourced from the *Atlas do Desenvolvimento Humano no Brasil*, made available by the United Nations Development Programme (UNDP). For trade data, we use the CEPII BACI database with bilateral trade values at the 6-digit Harmonized System classification. Our main analysis focuses on trade data from 2000 and 2010, while our robustness checks incorporate data spanning from 2000 to 2020, with trade values reported in thousands of 2010 US dollars per worker.

Formally, we define municipal exposure measures to export and import supply shocks as:

$$XD_m \equiv \sum_j \frac{L_{mj,2000}}{L_{m,2000}} \frac{\Delta X_j}{L_{Bj,2000}}, \quad IS_m \equiv \sum_j \frac{L_{mj,2000}}{L_{m,2000}} \frac{\Delta I_j}{L_{Bj,2000}} \quad (5)$$


where $L_{mj,2000}$ is the number of workers in sector j within municipality m in 2000, $L_{m,2000}$ is the total workforce in municipality m in 2000, and $L_{Bj,2000}$ is Brazil's total workforce in sector j in the same year. The variables ΔX_j and ΔI_j capture the change in Brazil's exports to and imports from China in sector j between 2000 and 2010.

This shift-share approach decomposes exposure into two components: a shift effect, capturing aggregate changes in national trade flows with China at the sectoral level ($\Delta X_j, \Delta I_j$), and a share effect, reflecting the initial industrial composition of each municipality ($L_{mj,2000}/L_{m,2000}$).

By leveraging this pre-determined employment structure, the methodology identifies differential exposure to the China Shock across municipalities based on their historical industrial specialization. In our context, this approach identifies the effect of China's trade expansion on municipalities by exploiting exogenous variation in sectoral trade exposure. The variation comes from the fact that municipalities differ in their initial employment shares across sectors, and these sectors experienced different levels of trade growth with China.

In Figure 4, we depict the regions most affected by the import and export components of the China Shock. The maps highlight in green the municipalities in the top quintile of exposure to each shock. The import shock primarily impacted coastal regions, where manufacturing industries faced increased competition from Chinese imports. In contrast, the export shock was more concentrated in rural areas, where demand for Brazilian commodities surged due to China's growing import needs.

Figure 4: Municipalities in the top quintile of the China Shock

C. Summary Statistics

Table 1 reports summary statistics for the import and export shocks alongside key control variables, including separate averages for municipalities in the top quintile of each shock. The comparison in columns (4) and (5) highlights socioeconomic differences between municipalities more exposed to import competition and those more affected by export demand. Municipalities in the top quintile of import exposure tend to be more urban, have lower informal employment shares, and are significantly larger in population. In contrast, the two groups display similar levels of income inequality, as measured by the Gini Index, and comparable shares of workers in unskilled occupations.

Table 1: Summary Statistics

Variable	All Municipalities		Top Quintile		Range		
	Mean	SD	Top 20% IS	Top 20% XD	Min	Max	N
Import Competition	0.19	0.28	0.62	0.23	0.00	1.60	38,404
Export Demand	0.62	1.83	0.72	2.80	0.00	12.38	38,404
Pre-Trend Candidates (1996–2000)	8.12	24.33	12.57	7.92	-201.00	409.00	37,746
PT Vote Share (1998)	0.25	0.13	0.28	0.32	0.01	0.73	38,404
Rural Population Share	0.41	0.23	0.22	0.37	0.00	1.00	38,404
Informal Employment Share	0.43	0.13	0.34	0.43	0.11	0.91	38,404
Log Income per Capita	4.68	0.68	5.18	5.03	2.13	6.52	38,404
Population	17,093	112,036	48,063	16,541	438	6,365,884	38,404
Unskilled Occupation Share	0.86	0.05	0.83	0.86	0.53	0.98	38,404
Gini Index	0.55	0.07	0.52	0.54	0.30	0.87	38,404

Note: This table presents summary statistics for the main variables used in the analysis. Columns (4) and (5) show values for municipalities in the top quintile of Import Competition (IS) and Export Demand (XD), respectively. PT vote share refers to the Workers' Party (PT) in the 1998 presidential election in each municipality. Pre-trend is defined as the difference in the number of city council candidates between 2000 and 1996. All variables, except Import Competition and Export Demand, are measured relative to the baseline year 2000. Sources: TSE (elections), IBGE (Census 2000), Atlas do Desenvolvimento Humano no Brasil (UNDP), and CEPHI BACI (trade data).

V. Empirical Strategy

A. Instrumenting for Trade Exposure

A key empirical challenge is that observed changes in Brazil-China trade flows may be endogenous to local economic conditions, such as productivity shifts or sector-specific policies. To address this concern, we construct instrumental variables for XD_m and IS_m , following the approach of [Costa et al. \(2016\)](#).

The instruments rely on the predicted growth of China's trade with the rest of the world, excluding Brazil. Instead of directly using the changes in Brazil-China trade, we estimate the sectoral evolution of trade flows by using auxiliary regressions that remove global price and quantity trends, isolating China-specific deviations from global trade patterns. Let $\tilde{I}_{ij,t}$ and $\tilde{X}_{ij,t}$ denote total imports and exports of country i in sector j at time t , excluding Brazil. We estimate:

$$\frac{\Delta \tilde{I}_{ij}}{\tilde{I}_{ij,2000}} = \alpha_j + \phi_{China,j} + \epsilon_{ij}, \quad (6)$$

$$\frac{\Delta \tilde{X}_{ij}}{\tilde{X}_{ij,2000}} = \gamma_j + \delta_{China,j} + \eta_{ij}, \quad (7)$$

where α_j and γ_j capture global sectoral trends, while $\phi_{China,j}$ and $\delta_{China,j}$ represent China-specific trade deviations. These regressions are weighted by initial trade volumes to prevent small economies from driving the estimates.

Using the estimated coefficients, we compute predicted sectoral trade growth:

$$\hat{\Delta I}_j = I_{j,2000} \hat{\phi}_{China,j}, \quad \hat{\Delta X}_j = X_{j,2000} \hat{\delta}_{China,j} \quad (8)$$

Substituting these predicted values into our exposure formulas, we obtain instrumented exposure measures:

$$\widehat{XD}_m \equiv \sum_j \frac{L_{mj,2000}}{L_{m,2000}} \frac{\Delta \hat{X}_j}{L_{Bj,2000}}, \quad \widehat{IS}_m \equiv \sum_j \frac{L_{mj,2000}}{L_{m,2000}} \frac{\Delta \hat{I}_j}{L_{Bj,2000}} \quad (9)$$

B. Baseline Specification

We estimate the effect of these trade shocks on municipal election outcomes using a Two-Stage Least Squares (2SLS) approach:

$$\Delta Y_{m,t} = \beta \widehat{IS}_{m,t} + \theta \widehat{XD}_{m,t} + \mathbf{X}'_m \delta + \gamma_s + \epsilon_m \quad (10)$$

where $\Delta Y_{m,t}$ represents the change in a given electoral outcome in municipality m between year t and 2000. The key explanatory variables are the instrumented import supply ($\widehat{IS}_{m,t}$) and export demand ($\widehat{XD}_{m,t}$) shocks. The model includes a vector of control variables \mathbf{X}_m accounting for baseline demographic characteristics and pre-trends in the number of candidates, as well as state fixed effects (γ_s). State fixed effects are included to capture the political and economic heterogeneity across Brazilian states. Moreover, key areas such as public security, health, and education are largely under the authority of state governments. Standard errors are clustered at the microregion level to account for spatial correlation.

The control vector \mathbf{X}_m includes the following variables: the pre-trend in the number of candidates ($\Delta N_{m,1996} = N_{2000,m} - N_{1996,m}$), the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income at the municipal level in 2000.

The selection of controls is guided by two considerations. First, we include variables commonly used in the trade shock literature, particularly those capturing local labor market conditions. Second, we incorporate measures of baseline political ideology and socioeconomic characteristics that have been shown to be relevant in the economic and political science literature on elections.⁸

The exclusion restriction assumes that China's trade growth with other countries affects Brazilian electoral outcomes only through its impact on local economic conditions, rather than through other unobserved mechanisms. This empirical strategy allows us to estimate the causal impact of the China Shock on political participation and candidate selection, leveraging plausibly exogenous variation in trade exposure across municipalities.

C. Identification and Inference

Our identification strategy relies on exogenous shocks, aligning with the “shocks-as-instruments” framework proposed by [Borusyak et al. \(2021\)](#). In this framework, identification does not require exogenous shares; instead, it requires that sectoral shocks be as-good-as-randomly assigned and that there be many approximately independent shocks. Under these conditions, endogenous shares do not mechanically violate the exclusion restriction—what matters is that sectors with larger shocks are not systematically associated with different sector-level unobservables. Following their recommendations, we document properties of the shock structure in our data. The employment-weighted

⁸See [Costa et al. \(2016\)](#), [Ogeda et al. \(2024\)](#), [Autor et al. \(2020\)](#), and [Che et al. \(2022\)](#); see also [Dippel et al. \(2022\)](#).

Herfindahl–Hirschman index of sectoral employment shares is 0.0432 for traded sectors, indicating that municipalities are exposed to many distinct shocks rather than a few dominant ones. Because we do not account for non-traded activities, sector shares do not sum to one. [Borusyak et al. \(2021\)](#) show that in such settings, controlling for the sum of traded-sector shares relaxes the standard Herfindahl requirement: identification can rest on dispersion of exposure within the traded subset, without assuming non-traded employment is small. Accordingly, our baseline regressions control for the 2000 composition of employment across agriculture, mining, manufacturing, and non-traded activities, as well as other long-run characteristics (rural, informal, and unskilled employment shares, log income per capita, and the Gini index).

Turning to inference, [Adão et al. \(2019\)](#) show that conventional geographically clustered standard errors can be misleading in shift-share designs. Even if residuals are independent across regions conditional on shocks, the use of common sectoral shocks induces correlation in regression residuals for regions with similar sectoral composition—correlation not captured by geographic clustering alone. They derive exposure-robust variance estimators that account for this under the same shock-exogeneity and many-shocks conditions discussed above.

The original derivation in [Adão et al. \(2019\)](#) covers a single shift-share instrument. Our specification includes two instruments—import competition and export demand—constructed from the same sectoral shares. We therefore follow [Dornelas and Chimeli \(2019\)](#), building on [Costa et al. \(2016\)](#): when estimating the effect of import competition, we use Z_m^{IS} as the instrument and include Z_m^{XD} as a control; when estimating the effect of export demand, we reverse the roles. For each outcome and election year, we compute exposure-robust standard errors using regional clustering, AKM, and AKM0. Results are summarized in Appendix C.1. Given the distinct nature of our estimation, we adopt standard errors clustered at the microregion level in our baseline. However, results are robust to using exposure-robust standard errors, reinforcing the conclusion that the estimated effects of trade exposure on political entry are not driven by mechanical correlation induced by the shift-share structure.

D. Robustness Checks

In addition to the standard error comparison discussed above, we conduct several robustness exercises. First, we run placebo regressions using the change in the number of candidates between the 1996 and 2000 elections. The results show no effect of the import shock on 1996 city council elections and only a modest effect of the export shock

(Appendix C.2).

Second, we augment the baseline specification by adding controls, including the shares of the municipality’s workforce employed in agriculture, extractive industries, and manufacturing in 2000, as well as a cubic polynomial in per capita income. The inclusion of these controls does not materially affect the results, which are reported in Appendix C.3.

Finally, we vary the construction of the Export Demand and Import Supply shock measures. While the baseline specification uses trade volume changes between 2010 and 2000, we re-estimate the model measuring trade changes from the year prior to each election relative to 2000 (e.g., 2011–2000 for the 2012 election, 2019–2000 for the 2020 election). Results remain consistent across these alternative measures (Appendix C.4).

VI. Results

This section presents the results following the timeline of the electoral process. We first examine whether the China Shock affected the number of individuals affiliating with political parties, a prerequisite for running for city council. We then study its effects on electoral participation and competition, before turning to changes in the demographic and ideological composition of the candidate pool. Finally, we assess how these shifts translate into election outcomes.

Building on the evidence from [Costa et al. \(2016\)](#), who show that regions more exposed to Chinese import competition experienced significant labor market deterioration, we link these empirical patterns to the predictions of our theoretical framework. A negative shock to opportunity costs should lead to an increase in the number of individuals entering the political arena. We therefore test whether the import shock raised political entry. Conversely, because the export shock improved local economic conditions, we would expect a decline in political entry in regions more exposed to export demand. As we show below, this prediction is not borne out in the data. Perhaps, in regions more affected by the export shock—typically more rural and less densely populated—the shock primarily affects individuals who would not have entered politics regardless, due to higher entry barriers stemming from local political dynamics.

Consistent with the theoretical framework, we also expect that reductions in opportunity costs shift the composition of political entrants toward higher-ability individuals, proxied by educational attainment.

Additional results, such as the effects of the China Shock on female candidacies and electoral success, underscore the role of local labor market conditions in shaping the heterogeneous political consequences of economic shocks.

A. Party Affiliation

In Brazil, individuals must be affiliated with a political party at least six months before the election date to be eligible to run for city council. We begin by investigating whether the China Shock affected patterns of party affiliation in the year preceding the deadline imposed by the Superior Electoral Court (TSE).

Although individuals already engaged in politics are more likely to be affiliated, economic shocks may draw new entrants into the political arena. Affected individuals who decide to run but are not yet affiliated must first join a party, implying that adverse economic shocks can influence the volume and composition of party affiliations by attracting previously unaffiliated citizens.

Table 2 presents the estimated effects of the import and export shocks on party affiliation for the 2004–2020 election cycles. There is no significant effect on affiliation through 2008, consistent with the timing of the China Shock. Starting in 2012, however, and continuing through 2016, we observe a positive and significant impact of import exposure on the number of new party affiliations. In 2016, municipalities in the 90th percentile of import shock exposure experienced an increase of approximately 50 additional affiliations relative to those in the 10th percentile.

Appendix B.1 further examines affiliation patterns by ideological orientation. While the increase in party affiliations arises across the ideological spectrum, the effect is stronger among individuals affiliating with non-left-wing parties.

Table 2: China shock and changes in political party affiliations

	2004	2008	2012	2016	2020
OLS					
IS	-8.164 (21.073)	-6.241 (25.404)	35.402 (22.748)	85.477*** (24.329)	21.268 (34.474)
XD	-0.959 (1.600)	-0.359 (1.706)	1.703 (1.645)	0.688 (1.434)	5.187** (2.480)
IV					
IS	-3.264 (23.454)	1.057 (27.538)	44.683* (24.478)	112.083*** (28.360)	36.594 (38.364)
XD	-0.739 (1.577)	-1.272 (1.392)	1.270 (1.511)	1.366 (1.452)	5.929** (2.558)
1st stage (KP F-stat.) - IS_{mt}	736.3	736.3	736.3	736.3	736.3
1st stage (KP F-stat.) - XD_{mt}	2283.1	2283.1	2283.1	2283.1	2283.1
Mean Dep. Variable	65.44	63.94	62.33	94.45	82.53
Observations	5,505	5,505	5,505	5,505	5,505
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on change in net number of new people affiliating with any political party. Each column corresponds to a different election year. Regressions control for the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, and the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

B. Electoral Participation and Competition

Our analysis of party affiliation suggests that the import shock had significant effects on the number of affiliations throughout the 2010s. It is important to note that changes in electoral participation could arise independently of shifts in party affiliation if the influx of candidates came primarily from individuals already involved in politics and already affiliated. The evidence instead indicates that political entry was not driven solely by insiders, but also by newcomers.

We next turn to the effects of the China Shock on the number of candidates (Table 3). Each column in the table corresponds to a regression for a specific election year, with OLS estimates reported in the upper panel and IV estimates in the lower panel. While the OLS results show some negative and significant effects of the import shock on the number of candidates during the 2000s, these effects disappear once we move to the IV specification, highlighting the importance of addressing the endogeneity concerns discussed in our identification strategy.

Starting in 2012, the import shock had a significant and positive impact on the relative number of candidates running for city council, compared to the 2000 baseline. These effects not only persist but also increase in magnitude over time, consistent with the long-term labor market impacts of the China Shock documented by [Autor et al. \(2021\)](#). In contrast, the export shock shows no discernible effects. To gauge the magnitude, moving from the 10th to the 90th percentile of exposure to the import shock is associated with an increase of approximately 5, 8, and 11 additional candidates in the 2012, 2016, and 2020 elections, respectively. By 2020, this increase represents nearly 50% of the mean change in the number of candidates relative to 2000.

Our theoretical and empirical predictions are based on the idea that changes in the opportunity cost of running for office affect political entry. However, if new candidates enter but electoral competition remains unchanged, this would suggest they fail to attract votes. To examine this, we use the effective number of candidates, defined as the inverse of the Herfindahl-Hirschman Index for vote shares (equation 4.1), which captures both entry and the distribution of votes. If entrants merely added noise without altering competitiveness, the measure would remain flat.

Table 4 shows that the import shock significantly increases the effective number of candidates, particularly from 2016 onward. The estimates imply that exposure at the 90th percentile relative to the 10th percentile raises the effective number of candidates by approximately 1.6 in 2016 and 2.4 in 2020, which are sizable in relation to the mean change in the number of candidates for each year. These findings suggest that new entrants were

Table 3: China shock and changes in the number of candidates

	2004	2008	2012	2016	2020
OLS					
IS	-5.911** (2.855)	-7.328** (3.173)	8.161* (4.242)	14.949*** (4.831)	22.208*** (5.601)
XD	-0.539** (0.261)	-0.323 (0.291)	-0.447 (0.272)	-0.480* (0.268)	-0.412 (0.363)
IV					
IS	-2.817 (3.180)	-3.354 (3.713)	10.879** (4.895)	17.165*** (5.801)	25.136*** (6.555)
XD	-0.614** (0.271)	-0.422 (0.306)	-0.322 (0.275)	-0.299 (0.270)	-0.166 (0.389)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-3.68	-6.92	10.99	13.61	23.18
Observations	5,393	5,387	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

not only running but were also capturing meaningful vote shares, intensifying electoral competition.

Table 4: China shock and changes in the effective number of candidates

	2004	2008	2012	2016	2020
OLS					
IS	-2.460*** (0.846)	-3.681*** (1.189)	-0.090 (1.235)	2.744* (1.484)	4.372*** (1.500)
XD	-0.107 (0.105)	-0.004 (0.121)	-0.014 (0.103)	-0.010 (0.111)	-0.004 (0.118)
IV					
IS	-1.250 (0.972)	-2.057 (1.415)	1.247 (1.476)	3.681** (1.787)	5.334*** (1.824)
XD	-0.116 (0.111)	-0.063 (0.128)	-0.034 (0.107)	-0.004 (0.120)	0.005 (0.128)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-2.39	-4.60	-2.00	-1.12	1.12
Observations	5,393	5,387	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the effective number of candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

We further examine whether these patterns are driven by individuals who had not run in the previous city council election. Our definition of "new" candidates includes those absent in the prior local election cycle.⁹ Across the period analyzed, roughly 65% of candidates had not run in the previous cycle. Following [Mattozzi and Merlo \(2008\)](#), we distinguish between political careers and career politicians and focus on identifying entrants likely making a transition from the labor market to politics. Table 5 confirms a positive and significant effect of the import shock on the relative number of new candidates from 2012 onward.

⁹Due to data limitations, we cannot identify candidates who never ran in any election before 1996.

The magnitudes are strikingly similar to the overall number of candidates: exposure to the 90th versus the 10th percentile is associated with approximately 5, 6, and 10 additional new candidates in 2012, 2016, and 2020, respectively. These patterns reinforce the evidence from party affiliation, indicating that a substantial share of the new political entrants were either genuine newcomers to the political arena or did not participate in the previous election cycle.

Table 5: China shock and changes in the number of new candidates

	2004	2008	2012	2016	2020
OLS					
IS	-2.968 (2.331)	-4.194* (2.216)	9.583*** (3.248)	13.247*** (4.067)	20.244*** (4.589)
XD	-0.511** (0.216)	-0.313 (0.230)	-0.380* (0.221)	-0.423** (0.206)	-0.351 (0.293)
IV					
IS	-0.386 (2.577)	-1.136 (2.597)	11.338*** (3.740)	14.439*** (4.861)	22.317*** (5.271)
XD	-0.526** (0.223)	-0.364 (0.237)	-0.232 (0.220)	-0.246 (0.206)	-0.125 (0.310)
1st stage (KP F-stat.) - IS_{mt}	719.2	719.2	719.2	719.2	719.2
1st stage (KP F-stat.) - XD_{mt}	2237.8	2237.8	2237.8	2237.8	2237.8
Mean Dep. Variable	-3.81	-6.34	9.93	10.59	19.12
Observations	5,395	5,395	5,395	5,395	5,395
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of new candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

These findings yield four key conclusions. First, the export shock does not appear to affect political entry. Second, the import shock significantly increases the number of candidates running for office. Third, this translates into greater electoral competition, as reflected in a higher effective number of candidates. Finally, a substantial portion of the increase is driven by new entrants who did not participate in the prior municipal election.

C. Candidate Quality

We proceed by examining the effects of the China Shock on the quality of political entrants. A central result of our theoretical framework is that a negative shock to individuals' outside options in the labor market increases the proportion of higher-ability candidates across most equilibria, even though labor market conditions deteriorate uniformly across individuals of all ability levels. While this may initially seem counterintuitive, the mechanism is straightforward: when private-sector wages decline, and when some high-ability individuals were already candidates in the initial equilibrium—or when the magnitude of the negative shock is sufficiently large—higher-ability individuals crowd out lower-ability ones, despite the uniform deterioration in labor market conditions.

Following standard practice in the literature, we proxy candidate quality by educational attainment. To examine changes in composition across education levels, we focus on three thresholds: candidates with at least secondary education, candidates with a college degree or higher, and, at the lower end, candidates without primary education.

Consistent with our theoretical predictions, we find that the import shock leads to a statistically significant increase in the share of candidates with higher education (Table 6), particularly from 2016 onward and at higher education thresholds (Table 7). At the same time, we observe a significant decline in the share of candidates without primary education (Table 8). These patterns are consistent across education groups and suggest that the import shock raised the average quality of the candidate pool.

In terms of magnitude, comparing municipalities at the 90th percentile of import exposure to those at the 10th, we estimate in 2020 a reduction of roughly 1 percentage point in the proportion of candidates without primary schooling, and an increase of about 1 percentage point in the proportion with at least secondary schooling. For college graduates, the increase is approximately 0.6 percentage points in both 2016 and 2020.

Our framework provides a natural interpretation of these findings. (Connolly, 2022; Autor et al., 2013) show that the import shock had broadly similar negative effects on local wages across education levels, allowing us to interpret it as a general deterioration in private-sector earnings. In this context, as labor market conditions worsen, more educated individuals are more responsive to the decline in opportunity costs, leading to an increase in their political participation and a shift in the composition of candidates toward higher educational attainment.

More generally, if lower-quality individuals face higher structural barriers to political entry, then a deterioration in private-sector opportunities may disproportionately encourage entry among more educated individuals. In this scenario, the worsening of market

conditions would amplify existing barriers, further crowding out lower-education candidates from political competition.

Interestingly, we also find that the export shock has a small but statistically significant positive effect on the share of candidates with higher education. This is the first instance where the export shock appears to influence political outcomes. These results raise the possibility that export and import shocks affect political entry through distinct mechanisms.

As discussed throughout the paper, import shocks disrupt labor markets primarily in urban and industrialized regions, directly affecting private-sector wages and opportunity costs of political participation. By contrast, export shocks are concentrated in rural, commodity-producing areas, where labor markets are more dependent on extractive and agricultural activities. These areas often exhibit greater political entrenchment, characterized by longstanding dominance of traditional elites and political families, potentially limiting the responsiveness of political entry to economic change. These patterns highlight the need for further investigation—both to refine the theoretical model in capturing how economic shocks shape political incentives and to estimate heterogeneous effects more precisely in the empirical analysis.

Table 6: China shock and changes in the share of candidates with secondary schooling

	2004	2008	2012	2016	2020
OLS					
IS	0.167 (0.593)	0.613 (0.563)	0.805 (0.677)	1.401* (0.788)	2.028*** (0.721)
XD	0.132 (0.091)	0.278*** (0.097)	0.150 (0.106)	0.374*** (0.114)	0.353*** (0.111)
IV					
IS	0.324 (0.680)	0.948 (0.686)	0.697 (0.814)	1.454 (0.930)	2.156** (0.854)
XD	0.120 (0.088)	0.211** (0.096)	0.121 (0.105)	0.331*** (0.114)	0.372*** (0.108)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.06	0.14	0.20	0.22	0.26
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of candidates with secondary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 7: China shock and changes in the share of candidates with a college degree

	2004	2008	2012	2016	2020
OLS					
IS	0.392 (0.306)	0.726* (0.381)	0.431 (0.424)	1.479*** (0.481)	1.452*** (0.508)
XD	0.068* (0.040)	0.118** (0.059)	0.245*** (0.060)	0.194*** (0.063)	0.183** (0.071)
IV					
IS	0.053 (0.345)	0.769* (0.451)	0.169 (0.505)	1.378** (0.578)	1.297** (0.592)
XD	0.062 (0.042)	0.084 (0.061)	0.209*** (0.058)	0.169*** (0.066)	0.170** (0.071)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.02	0.05	0.07	0.08	0.10
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of candidates with a college degree. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 8: China shock and changes in the share of candidates without primary schooling

	2004	2008	2012	2016	2020
OLS					
IS	-1.014 (0.692)	-2.782*** (0.713)	-1.904** (0.756)	-1.604* (0.853)	-1.814** (0.844)
XD	-0.434*** (0.102)	-0.147 (0.117)	-0.256** (0.122)	-0.336*** (0.127)	-0.368*** (0.128)
IV					
IS	-0.650 (0.782)	-2.902*** (0.814)	-2.242** (0.895)	-2.002** (0.958)	-2.102** (0.982)
XD	-0.449*** (0.103)	-0.124 (0.117)	-0.234* (0.126)	-0.297** (0.130)	-0.371*** (0.125)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.04	-0.11	-0.16	-0.18	-0.21
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of candidates without primary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

D. Candidate Demographics and Ideology

We next evaluate whether the China Shock altered the demographic and ideological composition of the candidate pool. Given the heterogeneous nature of the shock, it is plausible that its effects on political entry vary across characteristics such as gender, age, and education. Understanding these compositional shifts is key to unpacking how economic disruptions reshape political selection.

We focus on four dimensions: gender, age, education, and political ideology. While we analyze both absolute numbers and proportions, we report proportional changes in the main text to highlight shifts in the relative composition of candidates.¹⁰

We begin with gender. [Connolly \(2022\)](#), using a similar empirical framework, show that import competition from China led to larger wage declines for men than for women in Brazil, particularly in male-dominated sectors. Building on this evidence, we hypothesize that the import shock reduced the opportunity cost of running for office more sharply for men than for women, potentially shifting the composition of candidacies in favor of men. This is precisely what we observe: although both male and female candidacies increase, the import shock has a negative and statistically significant effect on the proportion of female candidates, with consistent results across the 2010s (Table 9).

In terms of magnitude, the average change in the proportion of female candidates between 2000 and 2020 is approximately 18 percentage points. Comparing municipalities at the 90th percentile of import exposure to those at the 10th percentile, the estimated effect in 2020 corresponds to a reduction of about 1 percentage point. While these compositional effects are smaller in absolute terms, they represent a meaningful shift in the gender balance of political entrants.

Turning to age, the median and mean ages of candidates consistently range between 42 and 45 years old across election cycles, with a gradual increase in the median over time. To capture shifts in the age distribution, we focus on candidates above and below the age of 40, a threshold below the overall mean and median across all years. As with gender, we find positive effects of the import shock on the number of candidates both above and below 40 years old.¹¹ However, when examining compositional outcomes, the import shock significantly increases the proportion of candidates under 40 (Table 10). This suggests that younger individuals were either more affected by the labor market disruptions caused by the shock or more responsive to declining opportunity costs. In either case, the evidence points to a compositional shift toward younger political entrants

¹⁰Results for absolute numbers are reported in the appendix.

¹¹See Appendix B.3.

in municipalities more exposed to the China Shock.

Table 9: China shock and changes in the share of female candidates

	2004	2008	2012	2016	2020
OLS					
IS	0.814** (0.342)	0.676 (0.420)	-1.285*** (0.415)	-1.352*** (0.402)	-1.877*** (0.390)
XD	0.017 (0.046)	-0.033 (0.053)	-0.022 (0.047)	-0.019 (0.052)	0.008 (0.045)
IV					
IS	0.710* (0.430)	0.489 (0.489)	-1.558*** (0.469)	-1.663*** (0.478)	-2.123*** (0.466)
XD	0.009 (0.047)	-0.026 (0.054)	-0.052 (0.049)	-0.049 (0.052)	-0.013 (0.047)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.03	0.03	0.15	0.16	0.18
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of female candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 10: China shock and changes in the share of candidates under 40 years old

	2004	2008	2012	2016	2020
OLS					
IS	0.939** (0.442)	2.305*** (0.570)	3.038*** (0.624)	2.163*** (0.600)	1.917*** (0.593)
XD	-0.027 (0.099)	-0.111 (0.110)	-0.215** (0.104)	-0.250** (0.120)	-0.238** (0.112)
IV					
IS	1.654*** (0.563)	2.506*** (0.659)	3.417*** (0.729)	2.069*** (0.725)	1.587** (0.699)
XD	0.013 (0.102)	-0.098 (0.114)	-0.164 (0.104)	-0.181 (0.125)	-0.171 (0.115)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.01	-0.05	-0.05	-0.05	-0.07
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of candidates under 40 years old. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Finally, we assess whether the overall increase in candidacies is accompanied by shifts in ideological composition. Specifically, we examine changes in the share of left-wing candidates relative to the 2000 election. Although the estimated effects are not statistically significant in most years—with the exception of 2016—the coefficients on the impact of increased import competition are consistently negative across all election cycles of the 2010s (Table 11).

Estimates of the overall number of candidates by ideological affiliation, reported in Appendix B.3, indicate that the import shock increased the number of both left-wing and non-left-wing candidates. However, the effect is substantially larger in magnitude for non-left-wing candidates. This pattern suggests that in municipalities more exposed to import competition, individuals were disproportionately more likely to enter city council races affiliated with non-left-wing parties.

Table 11: China shock and changes in the share of left-wing candidates

	2004	2008	2012	2016	2020
OLS					
IS	-1.279 (0.825)	-0.533 (0.907)	-1.461 (0.906)	-2.113** (0.839)	-2.083** (0.988)
XD	-0.060 (0.110)	0.068 (0.109)	-0.046 (0.100)	-0.061 (0.121)	-0.035 (0.124)
IV					
IS	-0.722 (0.978)	0.137 (1.057)	-0.759 (1.101)	-1.732* (1.031)	-1.764 (1.202)
XD	-0.051 (0.110)	0.085 (0.112)	-0.018 (0.103)	-0.073 (0.120)	-0.058 (0.130)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.08	0.10	0.11	0.05	0.02
Observations	5,393	5,387	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of left-wing candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

E. Electoral Outcomes

We now turn to electoral outcomes to assess whether the compositional changes in the candidate pool resulted in corresponding shifts in who ultimately gets elected. While some patterns observed among candidates carry through to electoral success, others appear attenuated or absent at the ballot box.

Among the most pronounced changes observed in the candidate pool was the improvement in educational attainment. We now assess whether this shift also materialized in electoral outcomes. In line with our theoretical predictions, the rise in the relative presence of more educated individuals among candidates is expected to translate into higher success rates for these groups. Consistent with this expectation, the import shock significantly increases the share of elected officials with at least secondary or college education (Tables 12 and 13), particularly in 2020, with additional gains for college-educated individuals already visible in 2016.

In contrast, we observe a persistent and statistically significant decline in the proportion of winners without primary schooling throughout the period of analysis (Table 14). To gauge the magnitude of these changes, we estimate that municipalities at the 90th percentile of import exposure saw a roughly 2 percentage point increase in the share of elected candidates with secondary education between 2000 and 2020. Over the same period, the share of elected individuals without primary schooling fell by approximately 2.25 percentage points. These compositional shifts—especially along educational lines—represent the most substantial and persistent responses to the shock, providing strong support for the mechanisms embedded in our theoretical framework.

We follow by examining whether the share of elected candidates who had not run in the previous municipal election changed in response to the shock. As shown in Table 15, we find no significant effects, suggesting that although new entrants increased, they were not systematically more or less likely to succeed at the polls.

The analysis of gender composition reveals that the import shock had a negative impact on the share of women among candidates. However, this shift in the candidate pool does not consistently translate into electoral outcomes. Although negative coefficients are observed across the 2010s, a statistically significant reduction in the proportion of elected women emerges only in the 2012 election (Table 16). This suggests that while women's political entry is sensitive to economic shocks, electoral success remains more stable.

When it comes to age, the import shock appears to have modestly reshaped who gets elected. Specifically, we find a small but statistically significant increase in the share of elected candidates under 40 years old (Table 17). This result indicates that, in

Table 12: China shock and changes in the share of elected candidates with secondary schooling

	2004	2008	2012	2016	2020
OLS					
IS	1.435 (1.170)	0.542 (1.082)	1.746 (1.153)	2.168* (1.182)	3.830*** (1.130)
XD	0.072 (0.133)	0.269* (0.158)	0.290* (0.152)	0.578*** (0.166)	0.498*** (0.137)
IV					
IS	1.731 (1.314)	0.038 (1.284)	0.976 (1.374)	1.383 (1.362)	4.565*** (1.265)
XD	0.035 (0.135)	0.208 (0.164)	0.274* (0.160)	0.537*** (0.175)	0.529*** (0.147)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.06	0.14	0.19	0.23	0.27
Observations	5,392	5,382	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of elected candidates with secondary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 13: China shock and changes in the share of elected candidates with a college degree

	2004	2008	2012	2016	2020
OLS					
IS	1.363 (0.849)	1.576 (0.982)	2.309** (0.984)	2.971*** (0.935)	2.928*** (1.055)
XD	0.055 (0.104)	0.126 (0.115)	0.272** (0.112)	0.311** (0.124)	0.232 (0.147)
IV					
IS	1.038 (0.957)	0.905 (1.086)	1.499 (1.014)	2.303** (1.131)	2.841** (1.135)
XD	0.003 (0.106)	0.080 (0.119)	0.232** (0.114)	0.286** (0.133)	0.215 (0.148)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.02	0.05	0.09	0.11	0.16
Observations	5,392	5,382	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of elected candidates with a college degree. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 14: China shock and changes in the share of elected candidates without primary schooling

	2004	2008	2012	2016	2020
OLS					
IS	-3.389*** (1.027)	-4.654*** (1.047)	-4.502*** (1.024)	-4.598*** (1.087)	-4.808*** (1.132)
XD	-0.359** (0.148)	-0.316** (0.158)	-0.414** (0.163)	-0.532*** (0.152)	-0.583*** (0.142)
IV					
IS	-3.382*** (1.190)	-3.922*** (1.203)	-3.951*** (1.193)	-4.070*** (1.165)	-5.026*** (1.175)
XD	-0.401** (0.158)	-0.287* (0.171)	-0.393** (0.178)	-0.501*** (0.169)	-0.626*** (0.150)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.03	-0.09	-0.13	-0.16	-0.18
Observations	5,392	5,382	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of elected candidates without primary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 15: China shock and changes in the share of new candidates elected

	2004	2008	2012	2016	2020
OLS					
IS	0.267 (0.544)	-0.117 (0.541)	0.524 (0.466)	0.298 (0.501)	0.199 (0.535)
XD	0.322*** (0.114)	0.354** (0.148)	0.194* (0.104)	0.194** (0.091)	0.113 (0.087)
IV					
IS	0.909 (0.594)	0.189 (0.593)	0.566 (0.493)	0.647 (0.542)	0.760 (0.586)
XD	0.326*** (0.112)	0.321** (0.146)	0.209** (0.099)	0.205** (0.091)	0.160* (0.086)
1st stage (KP F-stat.) - IS_{mt}	719.2	719.2	719.2	719.2	719.2
1st stage (KP F-stat.) - XD_{mt}	2237.8	2237.8	2237.8	2237.8	2237.8
Mean Dep. Variable	-0.02	-0.01	-0.05	-0.05	-0.05
Observations	5,392	5,383	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of new candidates elected. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 16: China shock and changes in the share of elected female candidates

	2004	2008	2012	2016	2020
OLS					
IS	0.605 (0.696)	0.716 (0.714)	-1.691** (0.735)	-0.836 (0.755)	-1.277 (0.814)
XD	0.097 (0.082)	0.035 (0.104)	0.009 (0.099)	0.058 (0.096)	0.021 (0.110)
IV					
IS	0.556 (0.837)	0.131 (0.822)	-2.150*** (0.822)	-0.764 (0.921)	-1.465 (0.971)
XD	0.133 (0.082)	0.069 (0.110)	0.033 (0.099)	0.075 (0.099)	0.067 (0.115)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.01	0.01	0.02	0.02	0.05
Observations	5,392	5,382	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of elected female candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

municipalities more exposed to the shock, younger individuals were slightly more likely to gain electoral traction.

Table 17: China shock and changes in the share of elected candidates under 40 years old

	2004	2008	2012	2016	2020
OLS					
IS	-3.296*** (1.055)	-1.708 (1.059)	0.245 (1.046)	-1.656* (0.931)	-0.524 (0.914)
XD	0.183 (0.134)	0.002 (0.139)	-0.007 (0.156)	0.177 (0.150)	0.085 (0.129)
IV					
IS	-3.023** (1.206)	-2.011 (1.246)	1.107 (1.231)	-1.240 (1.029)	-0.287 (0.980)
XD	0.151 (0.138)	-0.041 (0.153)	-0.020 (0.152)	0.158 (0.151)	0.158 (0.135)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.44	0.41	0.39	0.38	0.36
Observations	5,392	5,382	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of elected candidates under 40 years old. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Although no consistent pattern emerged regarding ideological composition among candidates, electoral outcomes reveal a different picture. The import shock is associated with a significant decline in the share of elected representatives affiliated with left-wing parties (Table 18). Compared to the effects on the candidate pool (Table 11), the coefficients for elected officials are, on average, at least twice as large, indicating a more pronounced shift at the ballot box than at the candidacy stage.

This divergence suggests that in municipalities more adversely affected by Chinese import competition, voters may have shifted support away from left-leaning options. One

possible explanation, aligned with the findings of [Ogeda et al. \(2024\)](#), is that the erosion of labor market conditions weakened institutional vehicles that traditionally mobilized support for the left, particularly labor unions. In their analysis of Brazil's 1990s trade liberalization, Ogeda et al. document a persistent decline in left-wing presidential vote shares in regions more exposed to tariff cuts—a shift they attribute to the weakening of union presence and capacity. While the trade shock in our setting is of a different nature and period, the electoral consequences may reflect similar institutional dynamics. The perception that left-wing parties are more closely aligned with trade partners such as China may have further shaped voter behavior in regions experiencing adverse labor market impacts.

Table 18: China shock and changes in the share of elected left-wing candidates

	2004	2008	2012	2016	2020
OLS					
IS	-2.018** (0.950)	-1.916* (1.099)	-2.038* (1.097)	-2.675*** (1.030)	-3.695*** (1.038)
XD	-0.008 (0.126)	-0.162 (0.139)	-0.096 (0.122)	-0.120 (0.125)	-0.080 (0.132)
IV					
IS	-2.466** (1.074)	-1.075 (1.260)	-2.504* (1.355)	-2.781** (1.282)	-3.540*** (1.260)
XD	-0.014 (0.137)	-0.159 (0.152)	-0.073 (0.134)	-0.182 (0.134)	-0.097 (0.142)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.07	0.11	0.12	0.08	0.04
Observations	5,392	5,382	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of elected left-wing candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

VII. Conclusion

This paper examines how large-scale trade shocks influence political entry, candidate composition, and electoral outcomes at the local level. Using the China Shock as a quasi-natural experiment, we study the political responses to economic dislocation across Brazilian municipalities from 2000 to 2020. The dual nature of the shock—import competition that undermined urban manufacturing and export demand that boosted rural commodity production—allows us to explore how distinct economic channels affect democratic participation and representation.

Our findings indicate that import exposure led to a significant increase in political entry. Beginning in 2012, municipalities more affected by import competition experienced additional increases in both the total number of city council candidates and the number of new entrants, along with heightened electoral competition. These results are consistent with a theoretical mechanism in which adverse labor market shocks reduce the opportunity cost of running for office, drawing individuals out of the private sector and into politics.

Our theoretical framework predicts that a general deterioration in labor market conditions increases the proportion of higher-ability individuals entering politics, even though conditions worsen for all. We find strong evidence supporting this prediction: exposure to the import shock leads to a higher share of candidates and elected officials with secondary or college education, and a decline in the share without primary schooling. These results suggest that adverse economic shocks can crowd out lower-ability candidates and improve the average quality of political entrants.

In contrast, the effects on gender and ideology are more uneven. While the relative share of female candidates declines, these changes do not consistently carry over to electoral outcomes. Likewise, despite little change in the ideological composition of candidates, there is a significant decline in the share of left-wing winners, suggesting a deterioration in the electoral performance of left-wing parties in areas more adversely affected by import competition.

Overall, the evidence highlights that trade-induced economic shocks not only influence who enters politics, but also who gets elected, with compositional changes strongest along educational lines. These findings offer new insight into how external economic forces interact with political selection mechanisms, reinforcing the role of opportunity costs in shaping political participation.

Future research should seek to pinpoint the individual labor market transitions underlying these dynamics. Leveraging micro-level labor data could help track movements from the private sector into political candidacies in regions more exposed to the China

Shock. Moreover, the absence of clear effects from the export boom underscores the need to further investigate the specific mechanisms through which different economic shocks affect political behavior. These patterns point to the importance of refining the theoretical framework to better capture heterogeneity in responses and improving empirical strategies to estimate these effects more precisely.

References

Adão, R., M. Kolesár, and E. Morales (2019, 08). Shift-share designs: Theory and inference*. *The Quarterly Journal of Economics* 134(4), 1949–2010.

Alesina, A., R. Baqir, and W. Easterly (1999, 11). Public goods and ethnic divisions*. *The Quarterly Journal of Economics* 114(4), 1243–1284.

Autor, D., D. Dorn, G. Hanson, and K. Majlesi (2020, October). Importing political polarization? the electoral consequences of rising trade exposure. *American Economic Review* 110(10), 3139–83.

Autor, D., D. Dorn, and G. H. Hanson (2021, October). On the persistence of the china shock. Working Paper 29401, National Bureau of Economic Research.

Autor, D. H., D. Dorn, and G. H. Hanson (2013, October). The china syndrome: Local labor market effects of import competition in the united states. *American Economic Review* 103(6), 2121–68.

Avis, E., C. Ferraz, F. Finan, and C. Varjão (2022, October). Money and politics: The effects of campaign spending limits on political entry and competition. *American Economic Journal: Applied Economics* 14(4), 167–99.

Beach, B. and D. B. Jones (2017, February). Gridlock: Ethnic diversity in government and the provision of public goods. *American Economic Journal: Economic Policy* 9(1), 112–36.

Besley, T. (2005, September). Political selection. *Journal of Economic Perspectives* 19(3), 43–60.

Besley, T. and S. Coate (1997). An economic model of representative democracy. *The Quarterly Journal of Economics* 112(1), 85–114.

Besley, T., J. G. Montalvo, and M. Reynal-Querol (2011). Do educated leaders matter? *The Economic Journal* 121(554), F205–227.

Borusyak, K., P. Hull, and X. Jaravel (2021, 06). Quasi-experimental shift-share research designs. *The Review of Economic Studies* 89(1), 181–213.

Campello, D. and F. Urdinez (2021). Voter and legislator responses to localized trade shocks from china in brazil. *Comparative Political Studies* 54(7), 1131–1162.

Caselli, F. and M. Morelli (2004). Bad politicians. *Journal of Public Economics* 88(3), 759–782.

Chattopadhyay, R. and E. Duflo (2004). Women as policy makers: Evidence from a randomized policy experiment in india. *Econometrica* 72(5), 1409–1443.

Che, Y., Y. Lu, J. R. Pierce, P. K. Schott, and Z. Tao (2022). Did trade liberalization with china influence us elections? *Journal of International Economics* 139, 103652.

Connolly, L. (2022). The effects of a trade shock on gender-specific labor market outcomes in brazil. *Labour Economics* 74, 102085.

Correa, G. and R. A. Madeira (2014, April). The Size of Local Legislatures and Women's Political Representation: Evidence from Brazil. Working Papers, Department of Economics 2014_04, *University of São Paulo (FEA – USP)*.

Costa, F., J. Garred, and J. P. Pessoa (2016). Winners and losers from a commodities-for-manufactures trade boom. *Journal of International Economics* 102(C), 50–69.

Dal Bó, E., F. Finan, and M. A. Rossi (2013, 04). Strengthening state capabilities: The role of financial incentives in the call to public service*. *The Quarterly Journal of Economics* 128(3), 1169–1218.

Dippel, C., R. Gold, S. Hebllich, and R. Pinto (2022). The Effect of Trade on Workers and Voters. *The Economic Journal* 132(641), 199–217.

Dornelas, V. S. and A. B. Chimeli (2019). China shock: environmental impacts in Brazil. Working Paper 2019-29, FEA-USP.

Ferraz, C. and F. Finan (2011). Motivating politicians: The impacts of monetary incentives on quality and performance. *NBER Working Paper No. 14906*.

Fisman, R., E. Kamenica, N. A. Harmon, and I. Munk (2015). Labor supply of politicians. *Journal of the European Economic Association* 13(5), 871–905.

Freitas, L. V., N. Menezes-Filho, and B. Komatsu (2020). Do changes in terms of trade impact election outcomes? *Economics Letters* 193, 109291.

Gagliarducci, S. and T. Nannicini (2013). Do better paid politicians perform better? disentangling incentives from selection. *Journal of the European Economic Association* 11(2), 369–398.

Gulzar, S., N. Haas, and B. Pasquale (2020). Does political affirmative action work, and for whom? theory and evidence on india’s scheduled areas. *American Political Science Review* 114(4), 1230–1246.

Gulzar, S. and M. Y. Khan (2024, 03). Good politicians: Experimental evidence on motivations for political candidacy and government performance. *The Review of Economic Studies* 92(1), 339–364.

Levitt, S. D. (1996). How do senators vote? disentangling the role of voter preferences, party affiliation, and senator ideology. *The American Economic Review* 86(3), 425–441.

Mattozzi, A. and A. Merlo (2008). Political careers or career politicians? *Journal of Public Economics* 92(3), 597–608.

McClean, C. (2023). Does the underrepresentation of young people in political institutions matter for social spending? Technical report, Working paper.

Moreno-Louzada, L., V. Cavalcante, and N. Menezes-Filho (2024). Globalization and political preferences in the developing world. Technical report, Working paper.

Norris, P. (1997). Choosing electoral systems: Proportional, majoritarian and mixed systems. *International Political Science Review / Revue internationale de science politique* 18(3), 297–312.

Novaes, L. M. and L. Schiumerini (2022). Commodity shocks and incumbency effects. *British Journal of Political Science* 52(4), 1689–1708.

Ogeda, P., E. Ornelas, and R. R. Soares (2024, 03). Labor unions and the electoral consequences of trade liberalization. *Journal of the European Economic Association* 23(1), 236–280.

Osborne, M. J. and A. Slivinski (1996). A model of political competition with citizen-candidates. *The Quarterly Journal of Economics* 111(1), 65–96.

Pande, R. (2003, September). Can mandated political representation increase policy influence for disadvantaged minorities? theory and evidence from india. *American Economic Review* 93(4), 1132–1151.

Power, T. and C. Zucco Jr (2009, 01). Estimating ideology of brazilian legislative parties, 1990–2005: A research communication. *Latin American Research Review* 44, 218–246.

Shaukat, M. (2019). Too close to call: Electoral competition and politician behavior in india. Technical report, Working Paper.

Appendix

A. Theoretical Model

1. Political Equilibrium

The formal definition of a political equilibrium (as per [Caselli and Morelli \(2004\)](#)) is as follows. Denote by d_i (equal to r (run) or n (don't run)) the decision of citizen i at the candidacy stage and denote by d the profile of candidacy decisions. Let $C(d)$ be the set of candidates given the candidacy profile d . Let $\Omega_i(d) \subseteq C(d)$ denote the subset of the candidates within which player i picks the candidate she will vote for (with a uniform draw). A political equilibrium is a profile $\{d^*, \Omega^*(\cdot)\}$ such that

1. $\Omega_i^*(d)$ is a 'conditionally sincere' best response to $\Omega_{-i}^*(d)$, $\forall d, \forall i$;
2. d^* is Nash given $\Omega^*(\cdot)$;
3. Weakly dominated strategies are eliminated.

Election probability for each signal $s_i, i \in \{H, L\}$ can be defined, respectively, as

$$P_H = \frac{b}{C_{H,H} + C_{L,H}} \quad \text{and} \quad P_L = \frac{b - \frac{b}{C_{H,H} + C_{L,H}}}{C_{L,L}}$$

Call \tilde{C}_j the measure of candidates with signal s_j , $j \in \{H, L\}$. Non-candidate voters will always vote for candidates in the signal group in which they believe that the ratio of θ_H to θ_L types is (weakly) higher. Hence, if \tilde{C}_H is non-empty, a voter who is not a candidate always votes for a (uniformly drawn) element of \tilde{C}_H over an element of \tilde{C}_L . Indeed, suppose that voters believe that the ratio of θ_H to θ_L types is higher in \tilde{C}_L than in \tilde{C}_H . If they do, it means that some θ_H -type, s_L -signal citizens are candidates, and, therefore, all low-ability, low-signal citizens are candidates. However, given the assumption $(1 - h)\mu > 2b$, we then have $\tilde{C}_L > b$. If voters vote according to their beliefs, this further implies that $P_H = 0$, so \tilde{C}_H is empty: a contradiction.

This shows that as long as the measure of candidates with high-signal is non-empty, voters will only vote for candidates with high-signal. When \tilde{C}_H is empty, non-candidates vote for a random member of \tilde{C}_L .

Given this voting behavior, it follows that if $\tilde{C}_H \leq b$, then $P_H = 1$ and $P_L = (b - \tilde{C}_H)/\tilde{C}_L$; while if $\tilde{C}_H > b$, then $P_H = b/\tilde{C}_H$ and $P_L = 0$.

Define $\mu_H = \sigma h \mu$, and $\mu_L = (1 - \sigma)(1 - h)\mu$. This definition gives us the measure of potential candidates with signal s_H and types θ_H and θ_L , respectively. Further, define $C_{i,j}$

as the measure of candidates with type θ_i , $i \in \{H, L\}$, who send signal s_j , $j \in \{H, L\}$. Note that for each type i , the total measure of candidates of type θ_i satisfies

$$C_i = C_{i,H} + C_{i,L}.$$

Finally, define the following objects:

$$P_H^{\min} = \frac{b}{\mu_H + \mu_L}$$

$$b_H^{\max} = \frac{\mu_H}{\mu_H + \mu_L}$$

P_H^{\min} is the probability that a signal- s_H candidate will be elected when all signal- s_H candidates run for office. It is the minimum value P_H can take. b_H^{\max} is the value taken by b_h when all signal- s_H candidates run for office, and the maximum value that b_h can take.

Now we examine the number of candidates and the proportion of high-ability candidates according to the model's parameters. Let the total number of candidates be denoted by N .

Case 1: $P_H^{\min}(\pi - \lambda) - \kappa \geq 0$

In this case, $C_H = \mu_H$ and $C_L = \mu_L$, so that $b_h = b_H^{\max}$. Suppose instead that $P_H^{\min}(\pi - \lambda) - \kappa < 0$. Then, some s_H -type, s_H -signal citizens would not run for office. If these non-candidates deviated and entered, their probability of election would be $\min[1, b/\tilde{C}_H]$, which is strictly greater than P_H^{\min} , contradicting their equilibrium choice. Hence, in this case, $N = \mu_H + \mu_L$. The rest of the analysis depends on the relative size of μ_L and b .

Case 2: $P_H^{\min}(\pi - \lambda) - \kappa < 0$ and $\mu_L \leq b$

Subcase 2.1: $\pi - \lambda - \kappa > 0$

In this region, type- θ_H , signal- s_H citizens must be indifferent between running and not running. If they strictly preferred running, all would run, implying $P_H = P_H^{\min}$, which leads to a contradiction. If they strictly preferred not running, then $P_H = 1$, also leading

to a contradiction. Therefore, the indifference condition must hold:

$$\frac{b}{C_H + \mu_L}(\pi - \lambda) - \kappa = 0. \quad (\text{A1})$$

This condition determines C_H , given by

$$C_H = b \left(\frac{\pi - \lambda}{\kappa} \right) - \mu_L.$$

Since high-ability, high-signal individuals are indifferent, it must be the case that low-ability, high-signal individuals strictly prefer entering ($\lambda > \epsilon$), so $C_L = \mu_L$. Hence, the total number of candidates is

$$N = b \left(\frac{\pi - \lambda}{\kappa} \right) > b$$

As $\lambda \rightarrow \pi - \kappa$, $C_H \rightarrow b - \mu_L$ and $b_h \rightarrow 1 - \frac{\mu_L}{b}$. In this interval, we also have $\tilde{C}_H \geq b$, so that

$$b_h = \frac{C_H}{\tilde{C}_H} = 1 - \frac{\mu_L}{b} \left(\frac{\kappa}{\pi - \lambda} \right). \quad (\text{A2})$$

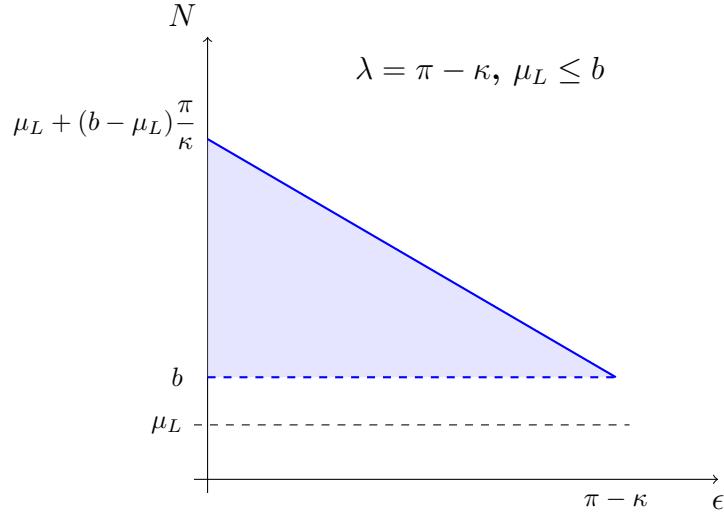
Subcase 2.2: $\pi - \lambda - \kappa = 0$

In this case, C_H can take any value in the interval $[0, b - \mu_L]$, and $P_H = 1$ throughout. The equilibrium features a continuum of $b_h \in [0, 1 - \frac{\mu_L}{b}]$. The total number of candidates (N) ranges from:

$$N = b \quad \text{when} \quad C_H = b - \mu_L$$

to

$$N = \mu_L + (b - \mu_L) \left(\frac{\pi - \epsilon}{\kappa} \right) \quad \text{when} \quad C_H = 0$$


In this range, for given ϵ , the number of candidates increases as C_H decreases. Moreover, for all ϵ , it holds that

$$\mu_H + \mu_L > \mu_L + (b - \mu_L) \left(\frac{\pi - \epsilon}{\kappa} \right),$$

so the maximum number of candidates at $\pi - \lambda - \kappa = 0$ is smaller than the maximum number when $P_H^{\min}(\pi - \lambda) - \kappa \geq 0$.

Subcase 2.3: $\pi - \lambda - \kappa < 0$

Figure 5: Political Equilibrium regions when $\lambda = \pi - \kappa$ and the measure of low-ability, high-signal is less than the measure of offices.

Then, running for office is not worthwhile for type- θ_H citizens even if $P_H = 1$, so $C_H = 0$. However, as long as $\pi - \epsilon - \kappa > 0$, some low-ability candidates may still enter ($C_L \geq b$), and $b_h = 0$. Let $C_{L,L}$ denote the measure of type- θ_L , signal- s_L candidates. Indifference requires:

$$\frac{b - \mu_L}{C_{L,L}}(\pi - \epsilon) - \kappa = 0,$$

which determines

$$C_{L,L} = (b - \mu_L) \left(\frac{\pi - \epsilon}{\kappa} \right) \quad \text{and} \quad N = \mu_L + (b - \mu_L) \left(\frac{\pi - \epsilon}{\kappa} \right).$$

Case 3: $P_H^{\min}(\pi - \lambda) - \kappa < 0$ and $\mu_L > b$

In this case, the measure of potential high-signal candidates exceeds the number of public office spots, so low-signal individuals never enter.

Subcase 3.1: $\frac{b}{\mu_L}(\pi - \lambda) - \kappa > 0$

Here the conditions (A1) and (A2) determine C_H and b_h .

Subcase 3.2: $\frac{b}{\mu_L}(\pi - \lambda) - \kappa \leq 0$

For expected net rewards weakly below this threshold, $b_h = 0$.

If $\pi - \epsilon - \kappa > 0$, then in equilibrium high-signal, low-ability individuals must be indifferent, satisfying:

$$\frac{b}{C_L}(\pi - \epsilon) - \kappa = 0,$$

which determines

$$C_L = b \left(\frac{\pi - \epsilon}{\kappa} \right) \quad \text{and} \quad N = C_L.$$

The results from Propositions (1) and (2) follow directly from the equilibrium characterizations presented above.

B. Additional results

1. Party Affiliation

Table 19: China shock and changes in left-wing political party affiliations

	2004	2008	2012	2016	2020
OLS					
IS	-19.911 (13.379)	-2.702 (7.488)	7.439 (10.598)	15.554* (9.366)	-39.142* (23.338)
XD	1.019 (0.962)	-0.195 (0.495)	0.734 (0.840)	-0.404 (0.446)	2.316** (0.991)
IV					
IS	-20.363 (15.633)	0.841 (8.729)	15.386 (11.605)	19.991* (10.657)	-35.467 (24.960)
XD	0.842 (0.919)	-0.116 (0.469)	0.139 (0.697)	-0.082 (0.465)	2.193** (0.998)
1st stage (KP F-stat.) - IS_{mt}	736.3	736.3	736.3	736.3	736.3
1st stage (KP F-stat.) - XD_{mt}	2283.1	2283.1	2283.1	2283.1	2283.1
Mean Dep. Variable	28.68	17.35	28.87	14.79	12.70
Observations	5,505	5,505	5,505	5,505	5,505
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on change in net number of new people affiliating with left-wing political parties. Each column corresponds to a different election year. Regressions control for the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, and the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 20: China shock and changes in non-left-wing political party affiliations

	2004	2008	2012	2016	2020
OLS					
IS	11.747 (13.380)	-3.539 (22.367)	27.963 (18.351)	69.923*** (20.132)	60.410*** (22.897)
XD	-1.978 (1.543)	-0.164 (1.619)	0.969 (1.139)	1.092 (1.351)	2.872 (2.099)
IV					
IS	17.099 (15.620)	0.217 (24.647)	29.297 (18.897)	92.092*** (22.905)	72.061*** (27.068)
XD	-1.581 (1.600)	-1.156 (1.193)	1.132 (1.153)	1.449 (1.363)	3.736* (2.184)
1st stage (KP F-stat.) - IS_{mt}	736.3	736.3	736.3	736.3	736.3
1st stage (KP F-stat.) - XD_{mt}	2283.1	2283.1	2283.1	2283.1	2283.1
Mean Dep. Variable	36.75	46.59	33.46	79.67	69.83
Observations	5,505	5,505	5,505	5,505	5,505
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on change in net number of new people affiliating with non-left-wing political parties. Each column corresponds to a different election year. Regressions control for the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, and the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

2. New candidates and reelection

Table 21: China shock and changes in the share of new candidates

	2004	2008	2012	2016	2020
OLS					
IS	0.799 (0.683)	1.773*** (0.585)	2.086*** (0.555)	1.578*** (0.594)	1.464** (0.665)
XD	-0.132 (0.117)	-0.070 (0.117)	0.076 (0.099)	-0.052 (0.131)	-0.044 (0.113)
IV					
IS	1.284 (0.814)	1.889*** (0.695)	1.747** (0.690)	1.270* (0.751)	1.736** (0.819)
XD	-0.089 (0.116)	-0.036 (0.115)	0.140 (0.094)	-0.025 (0.130)	-0.012 (0.112)
1st stage (KP F-stat.) - IS_{mt}	719.2	719.2	719.2	719.2	719.2
1st stage (KP F-stat.) - XD_{mt}	2237.8	2237.8	2237.8	2237.8	2237.8
Mean Dep. Variable	-0.02	-0.03	0.04	0.01	0.02
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of new candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 22: China shock and changes in the number of candidates running for reelection

	2004	2008	2012	2016	2020
OLS					
IS	-0.033 (0.134)	-0.624*** (0.193)	-0.807*** (0.204)	-0.030 (0.223)	-0.092 (0.188)
XD	0.017 (0.019)	0.023 (0.025)	0.024 (0.022)	0.016 (0.020)	0.022 (0.030)
IV					
IS	-0.069 (0.153)	-0.353 (0.240)	-0.652*** (0.247)	0.000 (0.258)	0.033 (0.226)
XD	0.015 (0.020)	0.012 (0.026)	0.007 (0.022)	0.016 (0.022)	0.017 (0.032)
1st stage (KP F-stat.) - IS_{mt}	719.2	719.2	719.2	719.2	719.2
1st stage (KP F-stat.) - XD_{mt}	2237.8	2237.8	2237.8	2237.8	2237.8
Mean Dep. Variable	-0.25	-1.22	-1.35	-0.41	-0.33
Observations	5,395	5,395	5,395	5,395	5,395
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of candidates running for reelection. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 23: China shock and changes in the share of reelected candidates

	2004	2008	2012	2016	2020
OLS					
IS	-0.412 (0.308)	-0.106 (0.341)	-0.296 (0.318)	0.009 (0.336)	-0.174 (0.376)
XD	-0.081 (0.067)	-0.104** (0.053)	-0.143*** (0.053)	-0.106* (0.059)	-0.155** (0.077)
IV					
IS	-0.753** (0.372)	-0.171 (0.411)	-0.667* (0.384)	-0.056 (0.389)	-0.700* (0.410)
XD	-0.089 (0.066)	-0.094* (0.053)	-0.137*** (0.052)	-0.093 (0.060)	-0.164** (0.076)
1st stage (KP F-stat.) - IS_{mt}	719.2	719.2	719.2	719.2	719.2
1st stage (KP F-stat.) - XD_{mt}	2237.8	2237.8	2237.8	2237.8	2237.8
Mean Dep. Variable	-0.03	-0.02	-0.02	-0.01	-0.00
Observations	5,395	5,392	5,382	5,394	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the share of reelected candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Coefficients and standard errors are multiplied by 100 (percentage points). Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

3. Candidate Demographics and Ideology

Table 24: China shock and changes in the number of female candidates

	2004	2008	2012	2016	2020
OLS					
IS	0.718 (0.673)	-0.216 (0.708)	5.471*** (1.333)	7.774*** (1.631)	10.990*** (1.989)
XD	-0.154*** (0.059)	-0.116* (0.066)	-0.248*** (0.087)	-0.272*** (0.093)	-0.238* (0.136)
IV					
IS	1.233* (0.725)	0.499 (0.842)	5.826*** (1.577)	7.939*** (1.990)	11.328*** (2.363)
XD	-0.151** (0.061)	-0.126* (0.069)	-0.176** (0.087)	-0.164* (0.089)	-0.090 (0.146)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	1.12	0.31	11.61	13.29	18.37
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of female candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 25: China shock and changes in the number of male candidates

	2004	2008	2012	2016	2020
OLS					
IS	-6.720*** (2.287)	-7.205*** (2.567)	1.922 (2.933)	7.166** (3.311)	11.188*** (3.748)
XD	-0.383* (0.211)	-0.238 (0.232)	-0.201 (0.193)	-0.212 (0.193)	-0.176 (0.242)
IV					
IS	-4.101 (2.580)	-3.844 (2.966)	4.550 (3.332)	9.231** (3.943)	13.800*** (4.353)
XD	-0.463** (0.221)	-0.323 (0.245)	-0.174 (0.199)	-0.139 (0.200)	-0.079 (0.260)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-4.91	-7.38	-1.85	0.32	4.80
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of male candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 26: China shock and changes in the number of candidates under 40 y/o

	2004	2008	2012	2016	2020
OLS					
IS	-2.460** (1.060)	-3.754*** (1.240)	0.644 (1.263)	2.843* (1.599)	2.559* (1.322)
XD	-0.217* (0.127)	-0.142 (0.128)	-0.167 (0.104)	-0.205** (0.103)	-0.104 (0.119)
IV					
IS	-0.866 (1.192)	-2.400 (1.462)	2.001 (1.424)	3.777** (1.879)	2.968** (1.506)
XD	-0.242* (0.136)	-0.204 (0.138)	-0.153 (0.111)	-0.162 (0.108)	-0.038 (0.136)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-2.44	-5.84	0.58	1.92	3.10
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of candidates under 40 y/o. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 27: China shock and changes in the number of candidates above 40 y/o

	2004	2008	2012	2016	2020
OLS					
IS	-3.556*	-3.661*	6.742**	12.101***	19.622***
	(1.947)	(2.088)	(3.113)	(3.454)	(4.540)
XD	-0.313**	-0.210	-0.279	-0.277	-0.309
	(0.156)	(0.180)	(0.182)	(0.194)	(0.278)
IV					
IS	-2.024	-0.937	8.366**	13.402***	22.165***
	(2.143)	(2.443)	(3.605)	(4.199)	(5.381)
XD	-0.366**	-0.244	-0.194	-0.140	-0.129
	(0.163)	(0.188)	(0.180)	(0.197)	(0.290)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-1.40	-1.23	9.17	11.70	20.08
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of candidates above 40 y/o. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 28: China shock and changes in the number of candidates without secondary schooling

	2004	2008	2012	2016	2020
OLS					
IS	-5.247*** (1.382)	-7.715*** (1.600)	-2.824* (1.671)	-3.440** (1.634)	-4.252*** (1.632)
XD	-0.421** (0.180)	-0.356** (0.182)	-0.330** (0.161)	-0.452** (0.177)	-0.419** (0.185)
IV					
IS	-3.630** (1.512)	-5.959*** (1.858)	-1.577 (1.885)	-2.917 (1.864)	-3.472* (1.863)
XD	-0.489*** (0.184)	-0.451** (0.190)	-0.377** (0.165)	-0.479*** (0.185)	-0.479** (0.193)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-4.96	-10.20	-6.36	-6.82	-6.94
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of candidates without secondary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 29: China shock and changes in the number of candidates with secondary schooling

	2004	2008	2012	2016	2020
OLS					
IS	-0.991 (1.794)	0.888 (2.073)	10.808*** (3.221)	18.967*** (4.227)	27.018*** (5.135)
XD	-0.115 (0.096)	-0.002 (0.133)	-0.124 (0.164)	-0.037 (0.197)	-0.001 (0.297)
IV					
IS	0.548 (2.022)	3.149 (2.436)	12.491*** (3.777)	20.621*** (5.163)	29.135*** (6.131)
XD	-0.125 (0.103)	0.008 (0.144)	0.032 (0.168)	0.182 (0.193)	0.316 (0.308)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	1.89	4.64	17.63	21.93	31.63
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of candidates with secondary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 30: China shock and changes in the number of candidates with a college degree

	2004	2008	2012	2016	2020
OLS					
IS	-0.818 (0.627)	0.442 (0.868)	3.587*** (1.205)	6.873*** (1.726)	10.042*** (2.119)
XD	-0.006 (0.038)	0.005 (0.048)	0.082 (0.062)	0.018 (0.077)	-0.035 (0.108)
IV					
IS	-0.507 (0.665)	1.300 (1.001)	4.072*** (1.445)	7.645*** (2.122)	10.790*** (2.522)
XD	-0.008 (0.039)	0.002 (0.050)	0.126** (0.064)	0.072 (0.077)	0.091 (0.120)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.23	1.55	5.65	6.97	11.75
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of candidates with a college degree. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 31: China shock and changes in the number of left-wing candidates

	2004	2008	2012	2016	2020
OLS					
IS	-0.149 (0.856)	0.639 (1.119)	4.701*** (1.544)	2.033 (1.480)	-0.674 (1.388)
XD	-0.246** (0.116)	-0.133 (0.110)	-0.233** (0.102)	-0.336*** (0.121)	-0.132 (0.110)
IV					
IS	1.475 (0.903)	2.697** (1.220)	6.577*** (1.688)	3.527** (1.774)	1.037 (1.650)
XD	-0.252** (0.117)	-0.118 (0.111)	-0.155 (0.101)	-0.285** (0.116)	-0.084 (0.119)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	3.46	3.50	9.02	4.86	4.13
Observations	5,393	5,387	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of left-wing candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 32: China shock and changes in the number of non-left-wing candidates

	2004	2008	2012	2016	2020
OLS					
IS	-5.762** (2.392)	-7.967*** (2.570)	3.460 (3.128)	12.916*** (3.689)	22.882*** (4.865)
XD	-0.293 (0.178)	-0.190 (0.226)	-0.214 (0.230)	-0.145 (0.217)	-0.279 (0.339)
IV					
IS	-4.292 (2.784)	-6.052** (3.075)	4.302 (3.708)	13.638*** (4.380)	24.099*** (5.854)
XD	-0.362* (0.189)	-0.304 (0.241)	-0.167 (0.243)	-0.015 (0.234)	-0.082 (0.362)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-7.14	-10.42	1.97	8.75	19.05
Observations	5,393	5,387	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of non-left-wing candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

4. Electoral Outcomes

Table 33: China shock and changes in the number of elected candidates without secondary schooling

	2004	2008	2012	2016	2020
OLS					
IS	-0.532*** (0.136)	-0.396*** (0.130)	-0.342** (0.138)	-0.411*** (0.136)	-0.649*** (0.138)
XD	-0.005 (0.016)	-0.023 (0.017)	-0.030* (0.016)	-0.053*** (0.018)	-0.046*** (0.017)
IV					
IS	-0.467*** (0.145)	-0.261* (0.156)	-0.233 (0.164)	-0.299* (0.157)	-0.694*** (0.156)
XD	-0.008 (0.017)	-0.024 (0.018)	-0.032* (0.017)	-0.054*** (0.020)	-0.054*** (0.018)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-1.14	-1.73	-1.94	-2.27	-2.71
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected candidates without secondary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 34: China shock and changes in the number of elected candidates without primary schooling

	2004	2008	2012	2016	2020
OLS					
IS	-0.452*** (0.106)	-0.565*** (0.109)	-0.475*** (0.107)	-0.517*** (0.116)	-0.568*** (0.118)
XD	-0.034** (0.016)	-0.032** (0.016)	-0.044*** (0.016)	-0.055*** (0.016)	-0.057*** (0.014)
IV					
IS	-0.405*** (0.119)	-0.448*** (0.126)	-0.388*** (0.125)	-0.447*** (0.121)	-0.562*** (0.122)
XD	-0.041** (0.017)	-0.032* (0.017)	-0.044** (0.018)	-0.054*** (0.018)	-0.064*** (0.015)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.59	-1.17	-1.42	-1.63	-1.89
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected candidates without primary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 35: China shock and changes in the number of elected candidates with a college degree

	2004	2008	2012	2016	2020
OLS					
IS	-0.115 (0.107)	-0.058 (0.128)	0.260* (0.135)	0.347** (0.136)	0.360** (0.150)
XD	0.014 (0.013)	0.021 (0.013)	0.030** (0.013)	0.030** (0.015)	0.018 (0.017)
IV					
IS	-0.096 (0.119)	-0.062 (0.138)	0.207 (0.145)	0.333** (0.152)	0.380** (0.160)
XD	0.007 (0.012)	0.016 (0.013)	0.029** (0.013)	0.030* (0.015)	0.021 (0.017)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.16	0.15	0.76	1.05	1.50
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected candidates with a college degree. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 36: China shock and changes in the number of elected candidates with secondary schooling

	2004	2008	2012	2016	2020
OLS					
IS	-0.308** (0.153)	-0.379*** (0.142)	0.279* (0.168)	0.351* (0.187)	0.539*** (0.193)
XD	0.033** (0.015)	0.050*** (0.018)	0.039** (0.017)	0.061*** (0.019)	0.056*** (0.017)
IV					
IS	-0.198 (0.181)	-0.353** (0.168)	0.248 (0.199)	0.301 (0.214)	0.645*** (0.220)
XD	0.024 (0.016)	0.041** (0.018)	0.041** (0.018)	0.063*** (0.020)	0.064*** (0.019)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.30	0.40	1.61	2.03	2.49
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected candidates with secondary schooling. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 37: China shock and changes in the number of elected male candidates

	2004	2008	2012	2016	2020
OLS					
IS	-0.774*** (0.153)	-0.751*** (0.164)	0.150 (0.181)	0.062 (0.188)	0.058 (0.188)
XD	0.019 (0.017)	0.023 (0.018)	0.012 (0.013)	0.004 (0.014)	0.011 (0.016)
IV					
IS	-0.639*** (0.176)	-0.568*** (0.191)	0.243 (0.211)	0.096 (0.219)	0.121 (0.218)
XD	0.006 (0.017)	0.011 (0.019)	0.010 (0.014)	0.004 (0.015)	0.007 (0.017)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-1.47	-1.44	-0.65	-0.59	-0.84
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected male candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 38: China shock and changes in the number of elected female candidates

	2004	2008	2012	2016	2020
OLS					
IS	-0.034 (0.070)	-0.024 (0.075)	-0.212*** (0.082)	-0.122 (0.088)	-0.167* (0.091)
XD	0.012 (0.009)	0.007 (0.010)	0.000 (0.010)	0.007 (0.011)	0.002 (0.012)
IV					
IS	-0.018 (0.085)	-0.054 (0.087)	-0.237** (0.093)	-0.103 (0.106)	-0.178* (0.107)
XD	0.014* (0.009)	0.009 (0.011)	0.002 (0.010)	0.008 (0.011)	0.006 (0.013)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.08	-0.09	0.12	0.15	0.42
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected female candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 39: China shock and changes in the number of elected candidates under 40 years old

	2004	2008	2012	2016	2020
OLS					
IS	-0.118 (0.123)	-0.005 (0.144)	0.352** (0.147)	0.228* (0.132)	0.303** (0.142)
XD	0.008 (0.017)	-0.008 (0.020)	-0.014 (0.018)	0.006 (0.019)	-0.003 (0.019)
IV					
IS	-0.045 (0.143)	0.017 (0.168)	0.470*** (0.164)	0.305** (0.143)	0.339** (0.148)
XD	0.010 (0.018)	-0.007 (0.022)	-0.009 (0.019)	0.012 (0.020)	0.013 (0.020)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.94	-1.23	-0.97	-1.08	-1.23
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected candidates under 40 years old. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 40: China shock and changes in the number of elected candidates above 40 years old

	2004	2008	2012	2016	2020
OLS					
IS	-0.697*** (0.142)	-0.774*** (0.170)	-0.414** (0.209)	-0.292 (0.188)	-0.417** (0.202)
XD	0.025 (0.018)	0.039* (0.021)	0.027 (0.019)	0.006 (0.022)	0.017 (0.022)
IV					
IS	-0.622*** (0.160)	-0.647*** (0.207)	-0.467** (0.238)	-0.318 (0.203)	-0.403* (0.226)
XD	0.013 (0.019)	0.028 (0.023)	0.022 (0.021)	0.001 (0.024)	0.001 (0.023)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-0.62	-0.30	0.44	0.64	0.82
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected candidates above 40 years old. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 41: China shock and changes in the number of elected left-wing candidates

	2004	2008	2012	2016	2020
OLS					
IS	-0.438*** (0.110)	-0.369*** (0.124)	-0.150 (0.137)	-0.317** (0.124)	-0.591*** (0.131)
XD	0.004 (0.013)	-0.011 (0.015)	-0.011 (0.013)	-0.011 (0.013)	-0.005 (0.015)
IV					
IS	-0.414*** (0.130)	-0.214 (0.144)	-0.139 (0.161)	-0.265* (0.152)	-0.527*** (0.160)
XD	0.001 (0.015)	-0.013 (0.016)	-0.009 (0.014)	-0.017 (0.014)	-0.007 (0.016)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	0.40	0.74	1.15	0.67	0.26
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected left-wing candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

Table 42: China shock and changes in the number of elected non-left-wing candidates

	2004	2008	2012	2016	2020
OLS					
IS	-0.370** (0.147)	-0.407** (0.166)	0.089 (0.187)	0.254 (0.188)	0.480** (0.218)
XD	0.027 (0.018)	0.042** (0.020)	0.023 (0.017)	0.022 (0.015)	0.018 (0.018)
IV					
IS	-0.245 (0.181)	-0.412** (0.193)	0.143 (0.219)	0.254 (0.226)	0.466* (0.263)
XD	0.019 (0.019)	0.033 (0.021)	0.021 (0.018)	0.029* (0.017)	0.020 (0.020)
1st stage (KP F-stat.) - IS_{mt}	719.1	723.2	719.3	715.7	718.7
1st stage (KP F-stat.) - XD_{mt}	2240.2	2230.7	2237.3	2236.1	2235.3
Mean Dep. Variable	-1.96	-2.28	-1.68	-1.12	-0.68
Observations	5,392	5,384	5,394	5,391	5,391
Controls	Yes	Yes	Yes	Yes	Yes
State Fixed Effects	Yes	Yes	Yes	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on changes in the number of elected non-left-wing candidates. Each column corresponds to a different election year. Regressions control for the pre-trend in the number of candidates between 1996 and 2000, the vote share for the Workers' Party (PT) in the 1998 presidential election, population size in 2000, the workforce shares of rural, informal, and unskilled workers in 2000, the log of per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. The 1st stage (KP F-stat.) for the first-stage regressions are reported for each instrument. Standard errors are clustered at the microregion level. Statistical significance is denoted by * $p < 0.1$, ** $p < 0.05$, and *** $p < 0.01$.

C. Robustness Checks

1. *Adão et al. (2019)* shift-share robust inference

Table 43: *Adão et al. (2019)* shift-share robust inference – Candidate characteristics

	2004	2008	2012	2016	2020
Difference in number of candidates					
IS – Coefficient	-0.172	-1.266	8.406	15.923	22.537
Microregion Cluster	[-6.435, 6.091]	[-7.765, 5.232]	[-0.969, 17.780]	[2.105, 29.741]	[8.233, 36.841]
AKM	[-4.399, 4.054]	[-6.375, 3.842]	[3.814, 12.997]	[8.231, 23.616]	[12.869, 32.205]
AKM0	[-7.614, 5.644]	[-9.218, 6.682]	[4.512, 21.514]	[9.129, 37.039]	[12.692, 45.523]
XD – Coefficient	-0.760	-0.529	-0.173	-0.016	0.283
Microregion Cluster	[-1.449, -0.070]	[-1.282, 0.225]	[-0.849, 0.504]	[-0.746, 0.714]	[-0.799, 1.365]
AKM	[-1.571, 0.052]	[-1.372, 0.314]	[-0.626, 0.281]	[-0.512, 0.480]	[-0.798, 1.364]
AKM0	[-4.020, -0.200]	[-3.910, 0.051]	[-0.952, 0.557]	[-0.748, 0.915]	[-0.590, 3.997]
Difference in effective number of candidates					
IS – Coefficient	-0.729	-0.748	1.678	4.035	5.416
Microregion Cluster	[-2.264, 0.807]	[-3.585, 2.088]	[-1.462, 4.817]	[-0.676, 8.746]	[0.538, 10.293]
AKM	[-1.842, 0.385]	[-2.513, 1.017]	[0.336, 3.019]	[1.951, 6.119]	[3.165, 7.666]
AKM0	[-2.376, 1.095]	[-3.879, 1.661]	[0.047, 4.349]	[2.291, 10.076]	[2.460, 9.566]
XD – Coefficient	-0.120	-0.087	0.008	0.107	0.169
Microregion Cluster	[-0.413, 0.172]	[-0.412, 0.238]	[-0.256, 0.272]	[-0.193, 0.407]	[-0.171, 0.510]
AKM	[-0.372, 0.131]	[-0.445, 0.270]	[-0.176, 0.192]	[-0.024, 0.237]	[-0.012, 0.350]
AKM0	[-1.098, 0.059]	[-1.537, 0.156]	[-0.735, 0.134]	[-0.234, 0.245]	[-0.052, 0.579]
Difference in number of new candidates					
IS – Coefficient	1.261	-0.206	8.408	13.552	19.738
Microregion Cluster	[-3.726, 6.248]	[-4.841, 4.429]	[0.979, 15.838]	[1.558, 25.546]	[7.480, 31.996]
AKM	[-2.104, 4.626]	[-3.665, 3.254]	[4.377, 12.439]	[7.316, 19.788]	[10.944, 28.532]
AKM0	[-3.959, 6.514]	[-5.423, 5.348]	[5.187, 20.622]	[7.951, 30.364]	[10.561, 40.143]
XD – Coefficient	-0.624	-0.440	-0.081	0.002	0.246
Microregion Cluster	[-1.208, -0.040]	[-1.035, 0.156]	[-0.623, 0.461]	[-0.610, 0.615]	[-0.655, 1.148]
AKM	[-1.269, 0.021]	[-0.987, 0.107]	[-0.542, 0.380]	[-0.489, 0.493]	[-0.764, 1.257]
AKM0	[-3.174, -0.172]	[-2.644, -0.064]	[-0.689, 0.886]	[-0.547, 1.217]	[-0.536, 3.860]

Note: This table reports the *Adão et al. (2019)* shift-share robust inference for the 2SLS coefficients of exposure to the Import Supply (IS) and Export Demand (XD) shocks. For each outcome and shock, the first row reports the IV coefficient, which is identical across the three exposure-robust methods and corresponds to the baseline specification in the main tables (same sample, controls, and state fixed effects). Instruments in this table are added separately, one regression for each instrument, controlling for the other. The subsequent rows report 95% confidence intervals computed using: (i) *Microregion Cluster*, which clusters the shift-share instrument at the microregion level, our main specification; (ii) *AKM*; and (iii) *AKM0* follow the std. errors developed in *Adão et al. (2019)*, where we group our 4-digit sectors derived into 3-digit sectors. For proportion outcomes, coefficients and confidence intervals are expressed in percentage points.

2. *Placebo*

Table 44: [Adão et al. \(2019\)](#) shift-share robust inference – Candidate demographics: education

	2004	2008	2012	2016	2020
Difference in proportion of candidates with secondary school					
IS – Coefficient	0.303	0.944	0.644	1.185	1.600
Microregion Cluster	[-0.867, 1.474]	[-0.386, 2.274]	[-0.879, 2.168]	[-0.388, 2.758]	[0.045, 3.156]
AKM	[-0.178, 0.785]	[0.236, 1.652]	[-0.177, 1.466]	[0.532, 1.838]	[0.669, 2.531]
AKM0	[-0.242, 1.336]	[-0.310, 1.912]	[-0.707, 1.853]	[-0.054, 2.019]	[0.259, 3.165]
XD – Coefficient	0.155	0.225	0.105	0.310	0.385
Microregion Cluster	[-0.091, 0.402]	[-0.038, 0.489]	[-0.167, 0.377]	[-0.007, 0.627]	[0.043, 0.728]
AKM	[0.034, 0.277]	[0.101, 0.349]	[-0.048, 0.257]	[0.209, 0.410]	[0.260, 0.510]
AKM0	[0.070, 0.632]	[0.040, 0.453]	[-0.004, 0.696]	[0.141, 0.476]	[0.255, 0.719]
Difference in proportion of candidates without primary school					
IS – Coefficient	-0.594	-2.331	-2.027	-1.540	-1.796
Microregion Cluster	[-1.960, 0.772]	[-3.867, -0.795]	[-3.682, -0.373]	[-3.294, 0.214]	[-3.521, -0.070]
AKM	[-1.201, 0.013]	[-3.178, -1.485]	[-3.610, -0.444]	[-2.678, -0.402]	[-2.976, -0.615]
AKM0	[-1.691, 0.221]	[-3.456, -0.788]	[-3.927, 1.168]	[-2.763, 1.026]	[-3.012, 0.981]
XD – Coefficient	-0.566	-0.064	-0.170	-0.235	-0.352
Microregion Cluster	[-0.852, -0.281]	[-0.405, 0.276]	[-0.543, 0.204]	[-0.626, 0.155]	[-0.732, 0.029]
AKM	[-0.678, -0.455]	[-0.219, 0.091]	[-0.356, 0.017]	[-0.382, -0.088]	[-0.534, -0.169]
AKM0	[-0.669, -0.230]	[-0.223, 0.354]	[-0.351, 0.364]	[-0.394, 0.142]	[-0.482, 0.361]
Difference in proportion of candidates with college degree					
IS – Coefficient	-0.266	0.127	-0.341	0.396	0.348
Microregion Cluster	[-0.843, 0.310]	[-0.701, 0.955]	[-1.201, 0.520]	[-0.579, 1.372]	[-0.668, 1.364]
AKM	[-0.683, 0.151]	[-0.429, 0.683]	[-0.956, 0.275]	[-0.128, 0.921]	[-0.433, 1.129]
AKM0	[-0.959, 0.341]	[-0.994, 0.795]	[-1.720, 0.324]	[-0.703, 1.004]	[-0.831, 1.601]
XD – Coefficient	0.088	0.168	0.318	0.248	0.278
Microregion Cluster	[-0.036, 0.212]	[0.002, 0.334]	[0.140, 0.497]	[0.093, 0.403]	[0.078, 0.478]
AKM	[0.012, 0.164]	[0.037, 0.299]	[0.229, 0.408]	[0.099, 0.396]	[0.195, 0.361]
AKM0	[-0.203, 0.143]	[-0.299, 0.270]	[0.016, 0.393]	[-0.435, 0.337]	[-0.035, 0.339]

Note: This table reports the [Adão et al. \(2019\)](#) shift-share robust inference for the 2SLS coefficients of exposure to the Import Supply (IS) and Export Demand (XD) shocks. For each outcome and shock, the first row reports the IV coefficient, which is identical across the three exposure-robust methods and corresponds to the baseline specification in the main tables (same sample, controls, and state fixed effects). Instruments in this table are added separately, one regression for each instrument, controlling for the other. The subsequent rows report 95% confidence intervals computed using: (i) *Microregion Cluster*, which clusters the shift-share instrument at the microregion level, our main specification; (ii) *AKM*; and (iii) *AKM0* follow the std. errors developed in [Adão et al. \(2019\)](#), where we group our 4-digit sectors derived into 3-digit sectors. For proportion outcomes, coefficients and confidence intervals are expressed in percentage points.

Table 45: [Adão et al. \(2019\)](#) shift-share robust inference – Candidate demographics: gender, age and ideology

	2004	2008	2012	2016	2020
Difference in proportion of women candidates					
IS – Coefficient	0.350	0.132	-1.487	-1.675	-1.916
Microregion Cluster	[-0.410, 1.110]	[-0.771, 1.036]	[-2.358, -0.617]	[-2.538, -0.811]	[-2.783, -1.049]
AKM	[-0.233, 0.933]	[-0.224, 0.489]	[-2.166, -0.809]	[-2.244, -1.105]	[-2.611, -1.222]
AKM0	[-0.445, 1.385]	[-0.319, 0.815]	[-2.675, -0.548]	[-2.641, -0.861]	[-3.261, -1.049]
XD – Coefficient	0.012	-0.021	-0.055	-0.046	-0.013
Microregion Cluster	[-0.129, 0.154]	[-0.178, 0.136]	[-0.194, 0.083]	[-0.178, 0.087]	[-0.137, 0.111]
AKM	[-0.054, 0.079]	[-0.127, 0.085]	[-0.121, 0.011]	[-0.087, -0.004]	[-0.082, 0.056]
AKM0	[-0.048, 0.213]	[-0.131, 0.261]	[-0.259, 0.004]	[-0.154, -0.003]	[-0.149, 0.084]
Difference in proportion of candidates under 40 y/o					
IS – Coefficient	1.140	2.059	2.275	1.019	0.844
Microregion Cluster	[0.146, 2.133]	[0.959, 3.159]	[0.863, 3.686]	[-0.292, 2.329]	[-0.553, 2.241]
AKM	[0.306, 1.973]	[1.026, 3.092]	[1.293, 3.256]	[0.312, 1.726]	[-0.107, 1.795]
AKM0	[-0.117, 2.481]	[0.070, 3.358]	[0.904, 3.976]	[-0.159, 2.048]	[-0.641, 2.320]
XD – Coefficient	0.027	-0.136	-0.198	-0.217	-0.251
Microregion Cluster	[-0.242, 0.296]	[-0.453, 0.181]	[-0.490, 0.093]	[-0.549, 0.116]	[-0.571, 0.070]
AKM	[-0.125, 0.179]	[-0.370, 0.097]	[-0.529, 0.133]	[-0.599, 0.166]	[-0.574, 0.073]
AKM0	[-0.096, 0.545]	[-0.320, 0.682]	[-0.438, 1.067]	[-0.475, 1.347]	[-0.491, 0.960]
Difference in proportion of left-wing candidates					
IS – Coefficient	-0.580	-0.053	-0.837	-1.630	-1.484
Microregion Cluster	[-2.318, 1.158]	[-1.808, 1.703]	[-2.733, 1.060]	[-3.484, 0.224]	[-3.518, 0.550]
AKM	[-1.381, 0.221]	[-0.704, 0.599]	[-2.430, 0.757]	[-3.090, -0.171]	[-3.054, 0.086]
AKM0	[-1.684, 0.829]	[-0.663, 1.628]	[-2.640, 2.573]	[-3.405, 1.280]	[-3.348, 1.717]
XD – Coefficient	-0.073	0.112	-0.022	-0.082	-0.120
Microregion Cluster	[-0.395, 0.249]	[-0.196, 0.420]	[-0.334, 0.290]	[-0.394, 0.229]	[-0.495, 0.254]
AKM	[-0.164, 0.017]	[-0.018, 0.241]	[-0.175, 0.130]	[-0.222, 0.057]	[-0.385, 0.144]
AKM0	[-0.480, -0.017]	[-0.103, 0.326]	[-0.157, 0.457]	[-0.494, 0.049]	[-0.471, 0.434]

Note: This table reports the [Adão et al. \(2019\)](#) shift-share robust inference for the 2SLS coefficients of exposure to the Import Supply (IS) and Export Demand (XD) shocks. For each outcome and shock, the first row reports the IV coefficient, which is identical across the three exposure-robust methods and corresponds to the baseline specification in the main tables (same sample, controls, and state fixed effects). Instruments in this table are added separately, one regression for each instrument, controlling for the other. The subsequent rows report 95% confidence intervals computed using: (i) *Microregion Cluster*, which clusters the shift-share instrument at the microregion level, our main specification; (ii) *AKM*; and (iii) *AKM0* follow the std. errors developed in [Adão et al. \(2019\)](#), where we group our 4-digit sectors derived into 3-digit sectors. For proportion outcomes, coefficients and confidence intervals are expressed in percentage points.

Table 46: [Adão et al. \(2019\)](#) shift-share robust inference – Elected officials: education

	2004	2008	2012	2016	2020
Difference in proportion of elected – secondary school					
IS – Coefficient	1.131	-0.040	0.540	1.190	3.610
Microregion Cluster	[-1.182, 3.445]	[-2.152, 2.073]	[-1.806, 2.885]	[-0.947, 3.327]	[1.270, 5.950]
AKM	[-0.756, 3.019]	[-1.445, 1.366]	[-1.721, 2.801]	[-1.265, 3.645]	[1.530, 5.690]
AKM0	[-0.798, 5.604]	[-2.901, 1.634]	[-2.786, 4.261]	[-2.469, 5.184]	[0.877, 7.442]
XD – Coefficient	0.027	0.263	0.252	0.548	0.590
Microregion Cluster	[-0.385, 0.439]	[-0.180, 0.706]	[-0.201, 0.705]	[0.030, 1.065]	[0.135, 1.045]
AKM	[-0.126, 0.179]	[0.143, 0.383]	[0.062, 0.441]	[0.220, 0.875]	[0.466, 0.714]
AKM0	[-0.277, 0.238]	[-0.163, 0.356]	[-0.332, 0.422]	[-0.560, 0.816]	[0.292, 0.734]
Difference in proportion of elected – without primary school					
IS – Coefficient	-2.695	-3.443	-3.108	-3.052	-4.608
Microregion Cluster	[-4.703, -0.686]	[-5.462, -1.425]	[-5.229, -0.987]	[-5.178, -0.926]	[-6.816, -2.400]
AKM	[-4.009, -1.380]	[-5.014, -1.873]	[-4.510, -1.706]	[-4.936, -1.168]	[-6.918, -2.298]
AKM0	[-5.118, -0.966]	[-5.013, 0.363]	[-4.754, -0.218]	[-5.458, 0.524]	[-7.556, -0.226]
XD – Coefficient	-0.501	-0.275	-0.415	-0.572	-0.724
Microregion Cluster	[-0.958, -0.045]	[-0.727, 0.177]	[-0.882, 0.051]	[-1.094, -0.050]	[-1.163, -0.285]
AKM	[-0.585, -0.417]	[-0.449, -0.101]	[-0.787, -0.044]	[-0.739, -0.405]	[-0.902, -0.546]
AKM0	[-0.599, -0.302]	[-0.426, 0.282]	[-0.675, 1.058]	[-0.714, -0.029]	[-0.928, -0.291]
Difference in proportion of elected – college degree					
IS – Coefficient	0.314	-0.132	0.132	0.834	1.464
Microregion Cluster	[-1.334, 1.962]	[-1.811, 1.548]	[-1.452, 1.717]	[-1.140, 2.807]	[-0.296, 3.223]
AKM	[-0.859, 1.487]	[-1.065, 0.802]	[-0.746, 1.011]	[-0.475, 2.143]	[-0.364, 3.292]
AKM0	[-1.090, 2.688]	[-1.151, 1.942]	[-1.451, 1.313]	[-1.513, 2.604]	[-1.579, 4.124]
XD – Coefficient	0.054	0.205	0.401	0.418	0.390
Microregion Cluster	[-0.239, 0.348]	[-0.129, 0.539]	[0.061, 0.742]	[0.040, 0.795]	[-0.007, 0.787]
AKM	[-0.163, 0.272]	[0.136, 0.274]	[0.237, 0.566]	[0.254, 0.582]	[0.297, 0.483]
AKM0	[-0.841, 0.200]	[0.075, 0.306]	[-0.154, 0.536]	[-0.211, 0.536]	[0.193, 0.513]

Note: This table reports the [Adão et al. \(2019\)](#) shift-share robust inference for the 2SLS coefficients of exposure to the Import Supply (IS) and Export Demand (XD) shocks. For each outcome and shock, the first row reports the IV coefficient, which is identical across the three exposure-robust methods and corresponds to the baseline specification in the main tables (same sample, controls, and state fixed effects). Instruments in this table are added separately, one regression for each instrument, controlling for the other. The subsequent rows report 95% confidence intervals computed using: (i) *Microregion Cluster*, which clusters the shift-share instrument at the microregion level, our main specification; (ii) *AKM*; and (iii) *AKM0* follow the std. errors developed in [Adão et al. \(2019\)](#), where we group our 4-digit sectors derived into 3-digit sectors. For proportion outcomes, coefficients and confidence intervals are expressed in percentage points.

Table 47: [Adão et al. \(2019\)](#) shift-share robust inference – Elected officials: gender, age and ideology

	2004	2008	2012	2016	2020
Difference in proportion of elected – Women					
IS – Coefficient	0.758	0.143	-1.289	0.024	-0.820
Microregion Cluster	[-0.571, 2.088]	[-1.308, 1.595]	[-2.706, 0.128]	[-1.695, 1.743]	[-2.637, 0.997]
AKM	[-0.307, 1.824]	[-1.100, 1.386]	[-2.241, -0.337]	[-1.590, 1.638]	[-2.249, 0.609]
AKM0	[-0.297, 3.364]	[-1.385, 2.593]	[-2.244, 1.009]	[-2.469, 2.558]	[-2.972, 1.476]
XD – Coefficient	0.158	0.148	0.040	0.093	0.082
Microregion Cluster	[-0.102, 0.418]	[-0.161, 0.457]	[-0.271, 0.350]	[-0.205, 0.392]	[-0.262, 0.426]
AKM	[0.104, 0.212]	[-0.125, 0.421]	[-0.055, 0.134]	[-0.058, 0.245]	[-0.199, 0.363]
AKM0	[-0.000, 0.210]	[-0.166, 0.802]	[-0.248, 0.126]	[-0.062, 0.503]	[-0.116, 1.189]
Difference in proportion of elected – Under 40 y/o					
IS – Coefficient	1.697	2.261	3.593	1.190	2.590
Microregion Cluster	[-1.019, 4.413]	[-0.221, 4.743]	[0.662, 6.524]	[-1.446, 3.827]	[0.292, 4.888]
AKM	[-0.589, 3.984]	[-0.139, 4.661]	[1.965, 5.222]	[-0.141, 2.522]	[0.588, 4.592]
AKM0	[-4.322, 3.802]	[-5.030, 4.175]	[-0.573, 5.135]	[-1.585, 2.738]	[-0.828, 5.429]
XD – Coefficient	0.051	-0.223	-0.078	0.145	0.108
Microregion Cluster	[-0.383, 0.484]	[-0.787, 0.341]	[-0.594, 0.438]	[-0.462, 0.752]	[-0.419, 0.635]
AKM	[-0.123, 0.225]	[-0.481, 0.036]	[-0.338, 0.181]	[-0.260, 0.550]	[-0.417, 0.633]
AKM0	[-0.250, 0.329]	[-0.516, 0.405]	[-0.530, 0.334]	[-0.161, 1.627]	[-0.336, 1.829]
Difference in proportion of elected – left-wing					
IS – Coefficient	-1.792	-0.739	-2.200	-2.401	-2.932
Microregion Cluster	[-3.776, 0.193]	[-3.039, 1.562]	[-4.712, 0.312]	[-5.048, 0.247]	[-5.250, -0.614]
AKM	[-3.520, -0.064]	[-2.028, 0.551]	[-3.354, -1.046]	[-3.327, -1.474]	[-3.893, -1.971]
AKM0	[-4.159, 1.265]	[-2.500, 1.549]	[-3.481, 0.315]	[-3.407, -0.331]	[-3.958, -0.752]
XD – Coefficient	-0.028	-0.237	-0.148	-0.269	-0.161
Microregion Cluster	[-0.381, 0.325]	[-0.614, 0.141]	[-0.504, 0.208]	[-0.649, 0.111]	[-0.568, 0.246]
AKM	[-0.164, 0.108]	[-0.409, -0.064]	[-0.440, 0.144]	[-0.465, -0.073]	[-0.424, 0.103]
AKM0	[-0.529, 0.074]	[-0.442, 0.164]	[-0.331, 1.148]	[-0.448, 0.325]	[-0.428, 0.562]

Note: This table reports the [Adão et al. \(2019\)](#) shift-share robust inference for the 2SLS coefficients of exposure to the Import Supply (IS) and Export Demand (XD) shocks. For each outcome and shock, the first row reports the IV coefficient, which is identical across the three exposure-robust methods and corresponds to the baseline specification in the main tables (same sample, controls, and state fixed effects). Instruments in this table are added separately, one regression for each instrument, controlling for the other. The subsequent rows report 95% confidence intervals computed using: (i) *Microregion Cluster*, which clusters the shift-share instrument at the microregion level, our main specification; (ii) *AKM*; and (iii) *AKM0* follow the std. errors developed in [Adão et al. \(2019\)](#), where we group our 4-digit sectors derived into 3-digit sectors. For proportion outcomes, coefficients and confidence intervals are expressed in percentage points.

Table 48: Placebo Test: Change in Number of Candidates (1996–2000)

<i>Dependent Variable:</i>		
Difference in Number of Candidates (1996–2000)		
	OLS	Instrumental Variable
IS	1.440 (2.437)	0.887 (2.710)
XD	0.706*** (0.203)	0.652*** (0.228)
First-stage F-stat (IS)		740.9
First-stage F-stat (XD)		2302.5
Observations	5,395	5,395
Mean of Dep. Var.	-8.137	-8.137
State Fixed Effects	Yes	Yes
Demographic Controls	Yes	Yes

Note: This table reports OLS and 2SLS estimates of the effect of exposure to the Import Supply (IS) and Export Demand (XD) shocks on the change in the number of candidates between the 1996 and 2000 municipal elections. Controls include PT vote share in the 1998 presidential election, 2000 population, workforce shares of rural, informal, and unskilled workers in 2000, log per capita income in 2000, and the Gini index of per capita household income in 2000. All specifications include state fixed effects. First-stage KP F-statistics are reported. Standard errors are clustered at the microregion level. Statistical significance: * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

3. Controls

Table 49: Robustness Analysis for Control selection: Differences in Number of Candidates, Competition and New Candidates

	2004	2008	2012	2016	2020
Difference in number of candidates					
IS: Main Spec	-2.817 (3.180)	-3.354 (3.713)	10.879** (4.895)	17.165*** (5.801)	25.136*** (6.555)
IS: Sector Controls	-3.267 (3.623)	-3.618 (4.265)	9.884* (5.610)	16.651** (6.758)	25.677*** (7.479)
IS: PCI Polynomial	-2.675 (3.122)	-3.491 (3.638)	9.660** (4.498)	15.748*** (5.424)	22.587*** (5.998)
XD: Main Spec	-0.614** (0.271)	-0.422 (0.306)	-0.322 (0.275)	-0.299 (0.270)	-0.166 (0.389)
XD: Sector Controls	-0.575** (0.261)	-0.401 (0.294)	-0.198 (0.275)	-0.160 (0.276)	-0.091 (0.394)
XD: PCI Polynomial	-0.605** (0.271)	-0.419 (0.306)	-0.291 (0.276)	-0.261 (0.274)	-0.103 (0.397)
Difference in effective number of candidates					
IS: Main Spec	-1.250 (0.972)	-2.057 (1.415)	1.247 (1.476)	3.681** (1.787)	5.334*** (1.824)
IS: Sector Controls	-1.511 (1.060)	-1.999 (1.604)	0.953 (1.702)	3.504* (2.070)	4.901** (2.139)
IS: PCI Polynomial	-1.360 (0.979)	-2.189 (1.431)	0.832 (1.456)	3.218* (1.776)	4.435** (1.800)
XD: Main Spec	-0.116 (0.111)	-0.063 (0.128)	-0.034 (0.107)	-0.004 (0.120)	0.005 (0.128)
XD: Sector Controls	-0.096 (0.108)	-0.064 (0.121)	0.003 (0.106)	0.038 (0.118)	0.042 (0.130)
XD: PCI Polynomial	-0.115 (0.110)	-0.064 (0.127)	-0.032 (0.106)	0.002 (0.120)	0.015 (0.129)
Difference in number of new candidates					
IS: Main Spec	-0.091 (2.523)	-0.826 (2.636)	11.617*** (3.958)	14.818*** (5.029)	22.628*** (5.267)
IS: Sector Controls	-0.372 (2.914)	-1.145 (3.048)	10.691** (4.523)	14.340** (5.835)	23.106*** (6.039)
IS: PCI Polynomial	0.140 (2.484)	-0.693 (2.631)	10.725*** (3.631)	13.711*** (4.789)	20.705*** (4.874)
XD: Main Spec	-0.239 (0.249)	-0.064 (0.259)	0.026 (0.228)	0.052 (0.235)	0.046 (0.315)
XD: Sector Controls	-0.226 (0.241)	-0.060 (0.253)	0.124 (0.227)	0.156 (0.241)	0.101 (0.317)
XD: PCI Polynomial	-0.235 (0.249)	-0.065 (0.259)	0.055 (0.230)	0.080 (0.239)	0.101 (0.322)

Note: This table reports 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on the number of candidates, effective number of candidates, and number of new candidates. "Main Spec" refers to the baseline specification. "Sector Controls" adds controls for the shares of the workforce in agriculture, extractive industries, and manufacturing (2000). "PCI Polynomial" includes a cubic polynomial in per capita income. All models include state fixed effects. Standard errors clustered at the microregion level. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Table 50: Robustness Analysis for Control selection: Differences in Candidate Demography and Ideology

	2004	2008	2012	2016	2020
Proportion of Women Candidates					
IS: Main Spec	0.710*	0.489	-1.558***	-1.663***	-2.123***
	(0.430)	(0.489)	(0.469)	(0.478)	(0.466)
IS: Sector Controls	0.525	0.204	-1.849***	-2.149***	-2.478***
	(0.504)	(0.572)	(0.529)	(0.550)	(0.543)
IS: PCI Polynomial	0.645	0.388	-1.656***	-1.777***	-2.188***
	(0.436)	(0.499)	(0.472)	(0.484)	(0.472)
XD: Main Spec	0.009	-0.026	-0.052	-0.049	-0.013
	(0.047)	(0.054)	(0.049)	(0.052)	(0.047)
XD: Sector Controls	0.008	-0.011	-0.027	-0.014	0.008
	(0.048)	(0.055)	(0.049)	(0.054)	(0.046)
XD: PCI Polynomial	0.010	-0.025	-0.056	-0.052	-0.014
	(0.047)	(0.054)	(0.048)	(0.052)	(0.047)
Proportion of Candidates Under 40					
IS: Main Spec	1.654***	2.506***	3.417***	2.069***	1.587**
	(0.563)	(0.659)	(0.729)	(0.725)	(0.699)
IS: Sector Controls	1.634**	2.442***	2.856***	1.319	1.164
	(0.668)	(0.744)	(0.841)	(0.876)	(0.866)
IS: PCI Polynomial	1.453**	2.283***	3.215***	1.912***	1.475**
	(0.582)	(0.675)	(0.751)	(0.735)	(0.718)
XD: Main Spec	0.013	-0.098	-0.164	-0.181	-0.171
	(0.102)	(0.114)	(0.104)	(0.125)	(0.115)
XD: Sector Controls	0.003	-0.108	-0.155	-0.177	-0.193*
	(0.105)	(0.117)	(0.105)	(0.123)	(0.113)
XD: PCI Polynomial	0.002	-0.116	-0.188*	-0.203	-0.189*
	(0.101)	(0.113)	(0.104)	(0.125)	(0.114)
Proportion of Left-Wing Candidates					
IS: Main Spec	-0.722	0.137	-0.759	-1.732*	-1.764
	(0.978)	(1.057)	(1.101)	(1.031)	(1.202)
IS: Sector Controls	-0.442	0.339	-0.451	-1.889	-1.692
	(1.096)	(1.133)	(1.208)	(1.153)	(1.362)
IS: PCI Polynomial	-0.754	-0.063	-0.744	-1.588	-1.618
	(0.993)	(1.072)	(1.109)	(1.038)	(1.210)
XD: Main Spec	-0.051	0.085	-0.018	-0.073	-0.058
	(0.110)	(0.112)	(0.103)	(0.120)	(0.130)
XD: Sector Controls	-0.035	0.099	-0.013	-0.038	-0.030
	(0.113)	(0.115)	(0.107)	(0.124)	(0.130)
XD: PCI Polynomial	-0.059	0.077	-0.023	-0.084	-0.073
	(0.110)	(0.113)	(0.103)	(0.120)	(0.130)

Note: This table reports 2SLS estimates of the effects of exposure to the Import Supply (IS) and Export Demand (XD) shocks on the proportion of women, young, and left-wing candidates. “Main Spec” is the baseline. “Sector Controls” include workforce shares in agriculture, extractive, and manufacturing sectors in 2000. “PCI Polynomial” adds a cubic polynomial in per capita income. All regressions include state fixed effects and cluster standard errors at the microregion level. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Table 51: Robustness Analysis for Control selection: Differences in Candidate Education

	2004	2008	2012	2016	2020
Proportion of Candidates with Secondary School					
IS: Main Spec	0.324 (0.680)	0.948 (0.686)	0.697 (0.814)	1.454 (0.930)	2.156** (0.854)
IS: Sector Controls	0.733 (0.801)	1.729** (0.837)	1.150 (0.959)	2.022* (1.074)	2.853*** (0.999)
IS: PCI Polynomial	0.227 (0.689)	1.048 (0.706)	0.813 (0.845)	1.524 (0.959)	2.162** (0.886)
XD: Main Spec	0.120 (0.088)	0.211** (0.096)	0.121 (0.105)	0.331*** (0.114)	0.372*** (0.108)
XD: Sector Controls	0.088 (0.091)	0.138 (0.100)	0.070 (0.108)	0.239** (0.114)	0.296*** (0.112)
XD: PCI Polynomial	0.113 (0.088)	0.198** (0.097)	0.093 (0.106)	0.304*** (0.117)	0.340*** (0.108)
Proportion of Candidates without Primary School					
IS: Main Spec	-0.650 (0.782)	-2.902*** (0.814)	-2.242** (0.895)	-2.002** (0.958)	-2.102** (0.982)
IS: Sector Controls	-1.101 (0.928)	-3.596*** (0.979)	-3.054*** (1.044)	-2.516** (1.092)	-2.863*** (1.110)
IS: PCI Polynomial	-0.523 (0.803)	-2.975*** (0.843)	-2.327** (0.934)	-2.013** (1.002)	-2.106** (1.030)
XD: Main Spec	-0.449*** (0.103)	-0.124 (0.117)	-0.234* (0.126)	-0.297** (0.130)	-0.371*** (0.125)
XD: Sector Controls	-0.413*** (0.108)	-0.061 (0.130)	-0.162 (0.136)	-0.218 (0.135)	-0.306** (0.129)
XD: PCI Polynomial	-0.436*** (0.104)	-0.095 (0.120)	-0.193 (0.127)	-0.254* (0.134)	-0.323** (0.127)
Proportion of Candidates with College Degree					
IS: Main Spec	0.053 (0.345)	0.769* (0.451)	0.169 (0.505)	1.378** (0.578)	1.297** (0.592)
IS: Sector Controls	-0.097 (0.382)	0.577 (0.516)	-0.021 (0.566)	1.087 (0.663)	1.106* (0.660)
IS: PCI Polynomial	0.025 (0.352)	0.725 (0.471)	0.095 (0.515)	1.234** (0.593)	1.133* (0.608)
XD: Main Spec	0.062 (0.042)	0.084 (0.061)	0.209*** (0.058)	0.169*** (0.066)	0.170** (0.071)
XD: Sector Controls	0.063 (0.044)	0.101 (0.063)	0.217*** (0.062)	0.169** (0.069)	0.189*** (0.073)
XD: PCI Polynomial	0.060 (0.042)	0.078 (0.061)	0.200*** (0.058)	0.160** (0.066)	0.161** (0.071)

Note: This table reports 2SLS estimates of the effects of the Import Supply (IS) and Export Demand (XD) shocks on the proportion of candidates by education level. “Main Spec” is the baseline. “Sector Controls” include shares employed in agriculture, extractive industries, and manufacturing in 2000. “PCI Polynomial” adds a cubic polynomial in per capita income. All regressions include state fixed effects. Standard errors are clustered at the microregion level. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Table 52: Robustness Analysis for Control selection: Differences in Demography and Ideology of Elected Candidates

	2004	2008	2012	2016	2020
Proportion of Elected Women					
IS: Main Spec	0.556 (0.837)	0.131 (0.822)	-2.150*** (0.822)	-0.764 (0.921)	-1.465 (0.971)
IS: Sector Controls	1.266 (0.971)	0.370 (0.961)	-1.607* (0.953)	-0.336 (1.072)	-1.181 (1.109)
IS: PCI Polynomial	0.714 (0.851)	0.291 (0.834)	-2.188*** (0.844)	-0.736 (0.941)	-1.656 (1.009)
XD: Main Spec	0.133 (0.082)	0.069 (0.110)	0.033 (0.099)	0.075 (0.099)	0.067 (0.115)
XD: Sector Controls	0.107 (0.086)	0.096 (0.115)	0.074 (0.106)	0.104 (0.103)	0.092 (0.122)
XD: PCI Polynomial	0.137* (0.082)	0.069 (0.110)	0.037 (0.099)	0.080 (0.098)	0.073 (0.115)
Proportion of Elected Under 40 y/o					
IS: Main Spec	-3.023** (1.206)	-2.011 (1.246)	1.107 (1.231)	-1.240 (1.029)	-0.287 (0.980)
IS: Sector Controls	-1.973 (1.446)	-1.690 (1.415)	1.005 (1.435)	-2.030* (1.152)	-0.431 (1.130)
IS: PCI Polynomial	-2.946** (1.226)	-2.080 (1.276)	1.314 (1.277)	-1.399 (1.043)	-0.275 (1.013)
XD: Main Spec	0.151 (0.138)	-0.041 (0.153)	-0.020 (0.152)	0.158 (0.151)	0.158 (0.135)
XD: Sector Controls	0.099 (0.141)	-0.118 (0.159)	-0.042 (0.158)	0.167 (0.156)	0.122 (0.134)
XD: PCI Polynomial	0.140 (0.138)	-0.063 (0.153)	-0.046 (0.151)	0.136 (0.150)	0.152 (0.135)
Proportion of Elected Left-Wing					
IS: Main Spec	-2.466** (1.074)	-1.075 (1.260)	-2.504* (1.355)	-2.781** (1.282)	-3.540*** (1.260)
IS: Sector Controls	-2.316* (1.234)	-0.888 (1.404)	-2.762* (1.538)	-3.529** (1.460)	-3.685** (1.449)
IS: PCI Polynomial	-2.430** (1.108)	-0.950 (1.281)	-2.289* (1.352)	-2.408* (1.295)	-3.186** (1.259)
XD: Main Spec	-0.014 (0.137)	-0.159 (0.152)	-0.073 (0.134)	-0.182 (0.134)	-0.097 (0.142)
XD: Sector Controls	0.011 (0.137)	-0.146 (0.151)	-0.095 (0.134)	-0.159 (0.136)	-0.066 (0.144)
XD: PCI Polynomial	-0.028 (0.137)	-0.166 (0.151)	-0.080 (0.133)	-0.188 (0.132)	-0.114 (0.141)

Note: This table reports 2SLS estimates of the effects of Import Supply (IS) and Export Demand (XD) shocks on the characteristics of elected candidates. “Main Spec” is the baseline model. “Sector Controls” include municipal employment shares in agriculture, extractive industries, and manufacturing in 2000. “PCI Polynomial” adds a cubic polynomial in per capita income. All regressions include state fixed effects. Standard errors are clustered at the microregion level. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Table 53: Robustness Analysis for Control selection: Differences in Education of Elected Candidates

	2004	2008	2012	2016	2020
Proportion of Elected with Secondary School					
IS: Main Spec	1.731 (1.314)	0.038 (1.284)	0.976 (1.374)	1.383 (1.362)	4.565*** (1.265)
IS: Sector Controls	2.682* (1.550)	0.303 (1.504)	1.510 (1.538)	2.050 (1.518)	5.548*** (1.421)
IS: PCI Polynomial	1.812 (1.342)	0.230 (1.293)	1.159 (1.415)	1.539 (1.393)	4.777*** (1.318)
XD: Main Spec	0.035 (0.135)	0.208 (0.164)	0.274* (0.160)	0.537*** (0.175)	0.529*** (0.147)
XD: Sector Controls	-0.038 (0.142)	0.183 (0.170)	0.215 (0.166)	0.434** (0.176)	0.417*** (0.153)
XD: PCI Polynomial	0.029 (0.135)	0.194 (0.164)	0.249 (0.161)	0.510*** (0.176)	0.495*** (0.149)
Proportion of Elected without Primary School					
IS: Main Spec	-3.382*** (1.190)	-3.922*** (1.203)	-3.951*** (1.193)	-4.070*** (1.165)	-5.026*** (1.175)
IS: Sector Controls	-4.334*** (1.429)	-4.626*** (1.437)	-5.039*** (1.450)	-4.686*** (1.342)	-6.392*** (1.343)
IS: PCI Polynomial	-3.453*** (1.211)	-3.984*** (1.223)	-4.123*** (1.247)	-4.004*** (1.200)	-5.084*** (1.235)
XD: Main Spec	-0.401** (0.158)	-0.287* (0.171)	-0.393** (0.178)	-0.501*** (0.169)	-0.626*** (0.150)
XD: Sector Controls	-0.324* (0.169)	-0.218 (0.184)	-0.336* (0.188)	-0.437** (0.178)	-0.521*** (0.160)
XD: PCI Polynomial	-0.391** (0.159)	-0.258 (0.173)	-0.356** (0.178)	-0.464*** (0.171)	-0.584*** (0.153)
Proportion of Elected with College Degree					
IS: Main Spec	1.038 (0.957)	0.905 (1.086)	1.499 (1.014)	2.303** (1.131)	2.841** (1.135)
IS: Sector Controls	0.934 (1.077)	0.085 (1.239)	1.200 (1.121)	1.646 (1.312)	2.222* (1.291)
IS: PCI Polynomial	0.848 (0.981)	0.622 (1.113)	1.034 (1.022)	1.868 (1.175)	2.534** (1.166)
XD: Main Spec	0.003 (0.106)	0.080 (0.119)	0.232** (0.114)	0.286** (0.133)	0.215 (0.148)
XD: Sector Controls	0.008 (0.109)	0.138 (0.125)	0.266** (0.120)	0.295** (0.138)	0.238 (0.152)
XD: PCI Polynomial	0.002 (0.107)	0.075 (0.120)	0.226** (0.114)	0.284** (0.134)	0.214 (0.147)

Note: This table presents 2SLS estimates of the impact of Import Supply (IS) and Export Demand (XD) shocks on the educational composition of elected candidates. “Main Spec” is the baseline. “Sector Controls” adds employment shares in agriculture, extractive industries, and manufacturing (2000). “PCI Polynomial” includes a cubic polynomial in income per capita. All regressions include state fixed effects. Standard errors clustered by microregion. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

4. Measure of trade shocks

Table 54: Robustness to Trade Shock Measure: Number of candidates, effective number of candidates, and new candidates

	2004	2008	2012	2016	2020
Difference in Number of Candidates					
IS	-54.192 (70.350)	-10.841 (6.849)	8.153** (3.685)	15.351*** (5.065)	18.553*** (4.824)
XD	-2.496 (1.583)	-0.966 (0.687)	-0.227 (0.198)	-0.218 (0.192)	0.072 (0.305)
Observations	5,393	5,387	5,394	5,391	5,391
Mean Dep. Var.	-3.68	-6.92	10.99	13.61	23.18
Difference in Effective Number of Candidates					
IS	-25.330 (21.067)	-5.685** (2.587)	0.985 (1.121)	3.125** (1.538)	4.017*** (1.359)
XD	-0.485 (0.658)	-0.146 (0.286)	-0.040 (0.075)	-0.004 (0.084)	0.034 (0.091)
Observations	5,393	5,387	5,394	5,391	5,391
Mean Dep. Var.	-2.39	-4.60	-2.00	-1.12	1.12
Difference in Number of New Candidates					
IS	-1.416 (56.344)	-5.628 (4.787)	8.498*** (2.814)	13.059*** (4.259)	16.566*** (3.921)
XD	-2.140 (1.348)	-0.826 (0.534)	-0.159 (0.155)	-0.178 (0.146)	0.094 (0.247)
Observations	5,395	5,395	5,395	5,395	5,395
Mean Dep. Var.	-3.81	-6.34	9.93	10.59	19.12

Note: This table presents 2SLS estimates of the impact of Import Supply (IS) and Export Demand (XD) shocks on the number of candidates, effective number of candidates, and number of new candidates. While the baseline specification uses trade volume changes between 2010 and 2000, this table re-estimates the model using trade changes from the year prior to each election relative to 2000 (e.g., 2011–2000 for the 2012 election, 2019–2000 for the 2020 election). All models include the same control variables as in the baseline and include state fixed effects. Standard errors are clustered by microregion. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Table 55: Robustness to Trade Shock Measure: Candidate Demographics

	2004	2008	2012	2016	2020
Difference in proportion of women candidates					
IS	13.899*	1.230	-1.202***	-1.512***	-1.638***
	(8.357)	(0.908)	(0.366)	(0.422)	(0.357)
XD	0.255	-0.069	-0.052	-0.036	-0.034
	(0.374)	(0.123)	(0.032)	(0.037)	(0.027)
Observations	5,392	5,384	5,394	5,391	5,391
Mean Dep. Var.	0.03	0.03	0.15	0.16	0.18
Difference in proportion with secondary school					
IS	6.400	1.926	0.525	1.467*	1.880***
	(13.753)	(1.260)	(0.638)	(0.816)	(0.648)
XD	0.820	0.461**	0.079	0.237***	0.229***
	(0.699)	(0.217)	(0.069)	(0.083)	(0.060)
Observations	5,392	5,384	5,394	5,391	5,391
Mean Dep. Var.	0.06	0.14	0.20	0.22	0.26
Difference without primary school					
IS	-27.552*	-6.289***	-1.772**	-1.973**	-1.833**
	(15.477)	(1.505)	(0.690)	(0.829)	(0.727)
XD	-3.170***	-0.261	-0.156*	-0.212**	-0.205***
	(0.790)	(0.268)	(0.084)	(0.092)	(0.069)
Observations	5,392	5,384	5,394	5,391	5,391
Mean Dep. Var.	-0.04	-0.11	-0.16	-0.18	-0.21
Difference with college degree					
IS	5.370	1.573*	0.121	1.278**	1.022**
	(7.571)	(0.825)	(0.393)	(0.508)	(0.448)
XD	0.515*	0.196	0.134***	0.118**	0.093**
	(0.305)	(0.139)	(0.039)	(0.046)	(0.039)
Observations	5,392	5,384	5,394	5,391	5,391
Mean Dep. Var.	0.02	0.05	0.07	0.08	0.10
Difference under 40 years old					
IS	22.930*	4.830***	2.594***	1.878***	1.175**
	(12.483)	(1.194)	(0.573)	(0.640)	(0.537)
XD	-0.012	-0.225	-0.093	-0.123	-0.052
	(0.814)	(0.258)	(0.067)	(0.085)	(0.059)
Observations	5,392	5,384	5,394	5,391	5,391
Mean Dep. Var.	-0.01	-0.05	-0.05	-0.05	-0.07
Difference in left-wing candidates					
IS	-22.124	-0.004	-0.568	-1.817**	-1.470
	(18.760)	(1.955)	(0.869)	(0.914)	(0.898)
XD	0.098	0.155	-0.010	-0.052	-0.018
	(0.825)	(0.255)	(0.070)	(0.085)	(0.082)
Observations	5,393	5,387	5,394	5,391	5,391
Mean Dep. Var.	0.08	0.10	0.11	0.05	0.02

Note: This table presents 2SLS estimates of the impact of Import Supply (IS) and Export Demand (XD) shocks on the demographic composition of candidates. While the baseline specification uses trade volume changes between 2010 and 2000, this table re-estimates the model using trade changes from the year prior to each election relative to 2000 (e.g., 2011–2000 for the 2012 election, 2019–2000 for the 2020 election). All models include the same control variables as in the baseline and include state fixed effects. Standard errors are clustered by microregion. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

Table 56: Robustness to Trade Shock Measure: Impact on Elected Officials Demography

	2004	2008	2012	2016	2020
Difference in proportion of elected - Women					
IS	16.768 (17.238)	0.505 (1.521)	-1.690*** (0.642)	-0.729 (0.818)	-1.147 (0.730)
XD	0.901 (0.626)	0.156 (0.249)	0.033 (0.066)	0.054 (0.069)	0.080 (0.070)
Observations	5,392	5,382	5,394	5,391	5,391
Mean Dep. Var.	0.01	0.01	0.02	0.02	0.05
Difference in proportion of elected - Under 40 y/o					
IS	-62.835** (26.157)	-3.756 (2.313)	0.921 (0.961)	-1.167 (0.909)	-0.253 (0.729)
XD	1.818* (1.055)	-0.108 (0.345)	-0.022 (0.100)	0.115 (0.107)	0.125 (0.077)
Observations	5,392	5,382	5,394	5,391	5,391
Mean Dep. Var.	0.44	0.41	0.39	0.38	0.36
Difference in proportion of elected - left-wing					
IS	-50.763** (21.242)	-2.378 (2.350)	-1.905* (1.068)	-2.786** (1.130)	-2.839*** (0.928)
XD	0.176 (0.919)	-0.379 (0.345)	-0.028 (0.094)	-0.128 (0.094)	-0.010 (0.094)
Observations	5,392	5,382	5,394	5,391	5,391
Mean Dep. Var.	0.07	0.11	0.12	0.08	0.04
Difference in proportion of elected - secondary school					
IS	41.080 (26.880)	0.100 (2.356)	0.766 (1.077)	1.523 (1.182)	3.513*** (0.964)
XD	0.485 (1.055)	0.444 (0.372)	0.182* (0.110)	0.383*** (0.123)	0.312*** (0.089)
Observations	5,392	5,382	5,394	5,391	5,391
Mean Dep. Var.	0.06	0.14	0.19	0.23	0.27
Difference in proportion of elected - without primary school					
IS	-79.391*** (23.773)	-8.822*** (2.222)	-3.094*** (0.926)	-4.064*** (1.024)	-4.064*** (0.886)
XD	-2.702** (1.165)	-0.616 (0.385)	-0.261** (0.120)	-0.359*** (0.122)	-0.351*** (0.093)
Observations	5,392	5,382	5,394	5,391	5,391
Mean Dep. Var.	-0.03	-0.09	-0.13	-0.16	-0.18
Difference in proportion of elected - college degree					
IS	29.629 (19.369)	1.816 (2.009)	1.149 (0.789)	2.063** (1.007)	2.136** (0.858)
XD	1.053 (0.722)	0.185 (0.271)	0.150* (0.078)	0.202** (0.095)	0.099 (0.088)
Observations	5,392	5,382	5,394	5,391	5,391
Mean Dep. Var.	0.02	0.05	0.09	0.11	0.16

Note: This table presents 2SLS estimates of the impact of Import Supply (IS) and Export Demand (XD) shocks on the characteristics of elected officials. While the baseline specification uses trade volume changes between 2010 and 2000, this table re-estimates the model using trade changes from the year prior to each election relative to 2000 (e.g., 2011–2000 for the 2012 election, 2019–2000 for the 2020 election). All models include the same control variables as in the baseline and include state fixed effects. ⁹⁷Standard errors are clustered by microregion. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

D. Political Party Classification

To classify political parties as either left-wing or non-left-wing, we primarily follow the classification by [Ogeda et al. \(2024\)](#). For parties not covered in their list, we rely on [Power and Zucco Jr \(2009\)](#) or common media portrayals of ideological orientation.

Table 57: Classification of Political Parties by Ideology

Left-Wing Parties	Non-Left-Wing Parties
PT, PV, PPS, PCO, PCB, PPL, PSB, PSOL, PSTU, PMN, PC do B, CIDADANIA, UP	DEM, MDB, PMB, PTC, PROS, AVANTE, PATRIOTA, REPUBLICANOS, SOLIDARIEDADE, PR, PHS, PT do B, PRB, UNIÃO, PST, PAN, PGT, PDT, PRN, PSL, PDS, PL, PPR, PP, PTB, PSP, PLP, NOVO, PSDB, PRONA, PMDB, PTN, PCN, PSDC, PN, PDCdoB, PRTB, PFL, PSC, PPB, PSN, PRP, PATRI, DC